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Description of Bound States
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A Question Since My Undergrad QFT Course

4

M. E. Peskin and D. V. Schroeder, An Introduction to quantum field 
theory, 1995

©C.R. Nave

Can we have an intuitive description of bound states in relativistic case?



Positronium
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A weak-coupled QED bound state: Positronium 

In the center-of-mass (COM) frame, the kinetic energy is , where  is the fine-structure constant, while the 

momentum is , so no transverse photon at the leading order (LO); 

In the large-momentum frame, things become more complicated (dynamics); 

This work aims to develop an EFT method to study bound states in relativistic motion; 

It also provides hints on the heavy quarkonium system in QCD.

∼ α2 α ≈
1

137

∼ α

Positronium

www.pngegg.com

Quarkonium

Cr. Avelludo



How to Describe a Bound State

Non-relativistic case :  

Wave function gives a complete description of a state in QM 

Relativistic case:  

Particle number is frame-dependent  

Hilbert space  Fock space 

Lorentz symmetry: different methods have different degrees of violation of Lorentz symmetry 

Bethe-Salpeter equation: defines covariant B-S amplitude as  

Light-front quantization: encodes dynamics in boost-invariant variables 

Fock state expansion with equal-time quantization: equal-time condition is frame-dependent

→

ΨP(p)αβ = ∫ d4xeix⋅p⟨Ω |T {ψ̄β(0)ψα(x)} |Pλ⟩

6

E.E. Salpeter, H.A. Bethe, Phys.Rev. 84 (1951); 
W. Lucha, EPJ Web Conf. 274 (2022)

S. J. Brodsky, et al., Phys.Rept. 301 (1998)



How to Describe a Bound State in Relativistic Case

We have some methods, but none of them is perfect 

Bethe-Salpeter equation: covariant 

Ladder approximation (single particle exchange) 

Needs non-perturbative input in strong-coupling case, like propagator 

Light-front quantization: boost invariant 

Zero modes ( ) are subtle and usually being omitted 

Needs non-perturbative methods in strong-coupling case: Dyson-Schwinger equation, Lattice QCD, etc. 

Fock state expansion with equal-time quantization: frame-dependent.  

Solve the wave function in a specific frame 

Not applicable to the theories with non-trivial vacuum structure or strong coupling, like QCD 

But it is intuitive and compatible with the old-fashioned perturbation theory, so it is a good method to combine with EFT

p+ = 0

7

 is single particle propagator,  is the kernel constructed with 
all possible two-particle irreducible diagrams.
S K

X. Ji and Y. Liu, PRD 105 (2022)



Fock State Expansion
Fock state expansion of the positronium 

 

Wave function:  

Old-fashioned perturbation theory (OFPT) 

Separate Hamiltonian as , suppose  are eigenstates of , and  are eigenstates of , then we have 

 

The LO perturbation theory could be represented by a time-ordered diagram, where  

| ⃗P ⟩s ≈ ∑
s1,s2

∫
d3p

(2π)3
C(1)

s,s1,s2
( ⃗p) e−

s1
( ⃗p), e+

s2
( ⃗P − ⃗p)⟩ + ∑

s1,s2
∫

d3p
(2π)3

d3k
(2π)3

C(2)
s,s1,s2

( ⃗p, ⃗k) e−
s1

( ⃗p), e+
s2

( ⃗P − ⃗p − ⃗k), γ( ⃗k)⟩ + …

C(1)
s,s1,s2

( ⃗p) =
⟨e−

s1
( ⃗p), e+

s2
( ⃗P − ⃗p) | ⃗P ⟩s

N
≡ Ss

s1,s2
( ⃗P )φ(1)

⃗P
( ⃗p)

H = H0 + V |ψ⟩ H |ϕ⟩ H0

⟨ϕ ∣ ψ⟩ =
1

Eψ − Eϕ ∑
ϕ′ 

⟨ϕ |V ϕ′ ⟩

⟨ϕ ∣ ϕ⟩
⟨ϕ′ ∣ ψ⟩ ⟹ φ(1)( ⃗p) =

1
Eψ − Eϕ ∑

ϕ′ 

⟨ϕ |V ϕ′ ⟩

⟨ϕ ∣ ϕ⟩
φ(1)( ⃗p′ )

ΔEB = Eψ − Eϕ

8

In the weak coupling limit, the pair creation and annihilation 
processes are suppressed, so spin part is not dynamical at LO.



EFT of Relativistic Positronium
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When we analyze the motion of a chick climbing a hill using Newtonian mechanics… 

When we have a very heavy propagator… 

 

Effective field theory (EFT) 

To build up an EFT: degrees of freedom (only relevant ones), power counting (error estimation) and symmetries (no 
model dependence) 

Two ways to construct EFTs: top-down (like NREFT), bottom-up (like Chiral P.T.)

Images created by ChatGPT + DALL-E

What is an Effective Field Theory

10

Four-fermion interaction

Some EFTs can be constructed in both ways, like NRQED.



Simple Example: NRQED for Hydrogen atom in COM
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Degrees of freedom (under the Coulomb gauge) 

Electron, Coulomb photon, radioactive photon 

Power counting 

Fermion 4-momentum:  where  

Photon 4-momentum:  

Energy:  

Electric energy  and magnetic energy  

Symmetries  

Gauge symmetry, 3D rotational symmetry , Parity, Time reversal

pμ = mvμ + qμ ∼ (1,0,0,0)m + (α2, α, α, α)m p2 = (mv + q)2 = m2 (1 + 𝒪(α2))

kμ ∼ (α, α, α, α)m

ϵ = m2 + | ⃗p |2 = m +
| ⃗p |2

2m
−

| ⃗p |4

8m3
+ … ∼ m + α2m + α4m + …

ϵelec ∼ ∫ d3r | ⃗E |2 ∼ α2m ϵmag ∼ ∫ d3r | ⃗B |2 ∼ α4m

SO(3)

Energy scale

ϵmag ϵelec q0

α4m α2m mαm

k0 p0



Simple Example: NRQED for Hydrogen atom in COM
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Bottom-up: The effective Lagrangian can be constructed by systematically listing all operators up to a given order that 

respect the symmetries of the theory. 

Gauge invariant / covariant ingredients: electric field , magnetic field , fermion spin  and covariant derivative  

P-parity:  is odd,  is even,  is even,  is odd; 

T-parity:  is even,  is odd,  is odd,  is even; 

All possible Hermitian operators 

Order :  ; 

Order : ,   ; 

Order : ,   ; 

The effective Lagrangian up to  

⃗E ⃗B ⃗σ Dμ

⃗E ⃗B ⃗σ ⃗D

⃗E ⃗B ⃗σ ⃗D

m0 iD0

m−1 | ⃗D |2 /2m ( ⃗σ ⋅ ⃗B )/2m

m−2 ( ⃗D ⋅ ⃗E − ⃗E ⋅ ⃗D)/m2 i ⃗σ ⋅ ( ⃗D × ⃗E − ⃗E × ⃗D)/m2

𝒪(m−2)

ℒNRQED = ψ† {iD0 +
| ⃗D |2

2m
+ cF

e( ⃗σ ⋅ ⃗B )
2m

+ cD
e( ⃗D ⋅ ⃗E − ⃗E ⋅ ⃗D)

8m2
+ cS

ie ⃗σ ⋅ ( ⃗D × ⃗E − ⃗E × ⃗D)
8m2 } ψ + 𝒪(m−3)



EFT of Relativistic Positronium
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Degrees of freedom (under the Coulomb gauge) 

Electron, positron, Coulomb photon, radioactive photon 

Power counting (  is the boost factor with hierarchy , velocity  is dropped) 

Fermion 4-momentum:  and  

Photon 4-momentum:  

Electric energy  and magnetic energy  

Symmetries:  

Gauge symmetry, 2D rotational symmetry , Parity, Time reversal, Charge parity, Reprameterization symmetry

γ αγn ≪ 1 β ≈ 1

pμ = mvμ + qμ ∼ (γ,0,0,γ)m + (αγ + α2γ, α, α, αγ + α2γ) qμ
⊥ ≡ qμ − (q ⋅ v)vμ ∼ (αγ, α, α, αγ)

kμ ∼ (αγ, α, α, αγ)m

ϵelec ∼ ∫ d3r | ⃗E |2 ∼ α2γm ϵmag ∼ ∫ d3r | ⃗B |2 ∼ α2γm

SO(2)

Energy scale

ϵmag ϵelec q0

α4γm α2γm γmαγm

k0 p0

q2
⊥ ∼ q2 ∼ α2m2

(q ⋅ v)2 ∼ α4m2



EFT of Relativistic Positronium
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Top-down: The effective Lagrangian can also be constructed from the full theory (QED) 

QED Lagrangian:   

Effective field of electron:   

Effective field of positron:   

Effective Lagrangian 

ℒQED = ψ̄(iD − m)ψ −
1
4

FμνFμν

ψv(x) ≡ eimv⋅xψ(x) = ( 1 + v
2

+
1 − v

2 ) ψv = hv + Hv

ϕv(x) ≡ e−imv⋅xψ(x) = ( 1 + v
2

+
1 − v

2 ) ϕv = Xv + χv

ℒ(1)
eff = h̄v(iD ⋅ v)hv + h̄v

(iD⊥)2

2m
hv + χ̄v(iD̃ ⋅ v)χv + χ̄v

(iD̃⊥)2

2m
χv −

1
4

FμνFμν
 Dμ = ∂μ − ieAμ

D̃μ = ∂μ + ieAμ

Separate momentum

Separate spinor structure, recall the Dirac equation  

Heavy component  can be removed using EOM

(p − m)us(p) = 0

Hv

Or just treat it as another independent 
fermion field with opposite charge.

Electron and positron are decoupled.

D⊥ = D − (D ⋅ v)v



EFT of Relativistic Positronium
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Effective Hamiltonian (electron only) 

 

Recall the power counting 

 

The interaction terms (electron only) in the effective Hamiltonian is 

ℋ(1)
h = h̄ (i ⃗D ⋅ ⃗v + eA0v0) h + h̄ (i∂0)2 − (eA0)2

2m
h + h̄

(i ⃗D)
2

2m
h + h̄

(i ⃗D ⋅ ⃗v + eA0v0)
2

− (i∂0v0)2

2m
h

ℋ(1)
vertex = h̄ (eA0v0 − e ⃗A ⋅ ⃗v) h

−h̄
e ⃗A ⋅ ( ⃗q + ⃗q′ )

2m
h − h̄

(e ⃗A ⋅ ⃗v)( ⃗q + ⃗q′ ) ⋅ ⃗v
2m

h

−h̄ (eA0)2

2m
h + h̄

(e ⃗A )2

2m
h + h̄

(e ⃗A ⋅ ⃗v)2

2m
h + h̄ (eA0v0)2

2m
h − h̄

e2A0v0 ⃗A ⋅ ⃗v
2m

h .

α2

α3

α4



Energy Denominator
Old-fashioned perturbation theory (OFPT) at LO 

 

The power counting of time-ordered diagrams is related to both the interaction terms and the energy denominator. 

There are two kinds of energy denominators potentially contribute at leading order 

 

Intermediate states without photon:  

Intermediate states with one or more photons:  

Ultra-soft photon:  and  , we just need to count the power of  and  , named 

φ(1)( ⃗p) =
1

Eψ − Eϕ ∑
ϕ′ 

⟨ϕ |V ϕ′ ⟩

⟨ϕ ∣ ϕ⟩
φ(1)( ⃗p′ )

ΔEB = E ⃗P − E ⃗p1
− E ⃗p2

∼ α2γ−1m

ΔEI = E ⃗P − E ⃗p1
− E ⃗p2− ⃗k − | ⃗k | ∼ αγ−1m

| ⃗k | ∼ α2γm ΔEI ∼ α2γ−1m | ⃗k | ΔEI Nk

16

When , the binding energy , just like 
the parton model.

γ → ∞ ΔEB → 0



Solving Positronium  
in COM Frame
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Apply EFT in Static Positronium
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The effective Hamiltonian in the static case ( ) is 

 

The power counting in the static case 

 

Using the old-fashioned perturbation theory 

 

Order  :  

Order  : 

vμ = (1,0,0,0)

ℋ(1)
eff = h†

v (eA0 +
(i ⃗D)2

2m ) hv + χ†
v −eA0 +

(i ˜ ⃗D)2

2m
χv +

1
2 ( ⃗E 2 + ⃗B 2)

⟨ϕ ∣ ψ⟩ =
1

Eψ − Eϕ ∑
ϕ′ 

⟨ϕ |V ϕ′ ⟩

⟨ϕ ∣ ϕ⟩
⟨ϕ′ ∣ ψ⟩

α2 V1 = h†
v (eA0) hv + χ†

v (−eA0) χv

α3 V2 = h†
v ( −ie ⃗q ⋅ ⃗A

2m ) hv + χ†
v ( ie(− ⃗q) ⋅ ⃗A

2m ) χv



Solving Static Positronium with OFPT
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Consider the first two orders in the effective potential 

Order  :  because  

Order  :  

There are three time-ordered diagrams 

                                                                  

                    

α2 V1 = h†
v (eA0) hv + χ†

v (−eA0) χv = h†
v χ†

v ( −e2

| ⃗k |2 ) hv χv ∇2 A0 = − ρ = − eψ†ψ

α3 V2 = h†
v ( −ie ⃗q ⋅ ⃗A

2m ) hv + χ†
v ( ie(− ⃗q) ⋅ ⃗A

2m ) χv

∫
d3k

(2π)3

1
ΔEB

−e2

| ⃗k |2
∼ α−1 | ⃗k | ∫

d3k
(2π)3

Dij

ΔEB
e2

−qiqj

(2m)2 ( 1
ΔEI1

+
1

ΔEI2 ) ∼ α | ⃗k |

, so the ultra-soft photon will 
not break the power counting.
Nk = 1

Dij = (δij −
kikj

| ⃗k |2 ) 1

2 | ⃗k |

Here we ignored the self-energy.



Wave Function of Static Positronium
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Using the OFPT 

 

The wave function satisfies 

 

Using convolution theorem, it gives the Coulomb’s Law 

⟨ϕ ∣ ψ⟩ =
1

Eψ − Eϕ ∑
ϕ′ 

⟨ϕ |V ϕ′ ⟩

⟨ϕ ∣ ϕ⟩
⟨ϕ′ ∣ ψ⟩

φ0⃗ ( ⃗q2) =
1

ΔEB ∫
d3k

(2π)3 ( −e2

| ⃗k |2 ) φ0⃗ ( ⃗q2 − ⃗k) =
−e2

ΔEB ∫
d3k

(2π)3

1

| ⃗k |2
φ0⃗ ( ⃗q2 − ⃗k)

ΔEB φ̃0⃗( ⃗x) = ( −e2

4π | ⃗x |
+ 𝒪(α4)) φ̃0⃗( ⃗x)



Solving Positronium  
in Relativistic Motion

21



OFPT of Relativistic Positronium

22

The interaction terms (electron only) in the effective Hamiltonian is 

 

The LO terms of vertices are , using OFPT we have three time-ordered diagrams 

         

ℋ(1)
vertex = h̄ (eA0v0 − e ⃗A ⋅ ⃗v) h − h̄

e ⃗A ⋅ ( ⃗q + ⃗q′ )
2m

h − h̄
(e ⃗A ⋅ ⃗v)( ⃗q + ⃗q′ ) ⋅ ⃗v

2m
h

−h̄ (eA0)2

2m
h + h̄

(e ⃗A )2

2m
h + h̄

(e ⃗A ⋅ ⃗v)2

2m
h + h̄ (eA0v0)2

2m
h − h̄

e2A0v0 ⃗A ⋅ ⃗v
2m

h .

eA0v0 − e ⃗A ⋅ ⃗v

(a) (c)

(e)

(b)

(d)

Feynman rules of vertices Equation of wave function at LO

α2 α3

α4



Wave Function of Relativistic Positronium
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The wave function of the relativistic positronium satisfies 

 

The energy denominator is 

 

Then the equation can be simplified as 

φ ⃗Q ( ⃗q2) =
1

ΔEB ( 1
v0 )

2

∫
d3 ⃗k

(2π)3 ( −e2

| ⃗k |2 (v0)2 +
1

δE [ | ⃗v |2 −
( ⃗v ⋅ ⃗k)2

| ⃗k |2 ] −e2

2 | ⃗k | ) φ ⃗Q ( ⃗q2 − ⃗k)

=
−e2

ΔEB ∫
d3 ⃗k

(2π)3 [ 1

| ⃗k |2
+

β2

δE
⋅

| ⃗k⊥ |2

2 | ⃗k |3 ] φ ⃗Q ( ⃗q2 − ⃗k)

1
δE

=
1

E − E ⃗q1
− E ⃗q2− ⃗k − | ⃗k |

+
1

E − E ⃗q2
− E ⃗q1+ ⃗k − | ⃗k |

=
1

ΔEI
+

1
ΔEI + E ⃗q1

+ E ⃗q2− ⃗k − E ⃗q2
− E ⃗q1+ ⃗k

=
−2 | ⃗k |

| ⃗k |2 − ( ⃗β ⋅ ⃗k)2

φ ⃗Q ( ⃗q2) =
−e2

ΔEB ∫
d3 ⃗k

(2π)3

1

| ⃗k |2 [1 −
β2 | ⃗k⊥ |2

| ⃗k |2 − ( ⃗β ⋅ ⃗k)2 ] φ ⃗Q ( ⃗q2 − ⃗k) =
−e2

ΔEB ∫
d3 ⃗k

(2π)3

1

γ2 | ⃗k⊥ |2 + k2
∥

φ ⃗Q ( ⃗q2 − ⃗k)



Wave Function of Relativistic Positronium
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Change momentum variables 

, where  

The wave function of the relativistic positronium satisfies 

 

It has the same form as the equation in the static case, so we have 

, with normalization  

It is found that the LO wave function of the relativistic positronium exactly contracts in the direction of motion. 

However, this is a non-trivial result because of the dynamical effects, the contribution of transverse photon becomes LO. 

To show the dynamical effects explicitly, we will evaluate the photon momentum distribution in the following slides. 

φ ⃗Q ( ⃗q2) =
−e2

ΔEB ∫
γd3 ̂k
(2π)3

1
γ2( ̂k2

⊥ + ̂k2
∥)

φ ⃗Q ( ⃗q2 − ⃗k) ̂k∥ = k∥/γ, ̂k2
⊥ = | ⃗k⊥ |2 , ̂q∥ = q∥/γ, ̂q2

⊥ = | ⃗q⊥ |2

φ ⃗Q ( ⃗q2) =
−e2

γΔEB ∫
d3 ̂k

(2π)3

1
( ̂k2

⊥ + ̂k2
∥)

φ ⃗Q ( ⃗q2 − ⃗k)

φ ⃗Q ( ⃗q) =
1
γ

φ0⃗( ̂q) ∫
d3 ⃗q

(2π)3
φ* ⃗Q

( ⃗q)φ ⃗Q ( ⃗q) = ∫
d3 ̂q

(2π)3
φ*⃗

0
( ̂q)φ0⃗( ̂q)

Note that , so  in COM.ΔEB ∼ α2γ−1m γΔEB = ΔEB0



Photon Momentum Operator
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To construct a gauge invariant photon momentum operator, we can make use of the energy-momentum tensor 

 

Then we can define the photon momentum operator as 

 

The photon momentum distribution in a moving positronium  (effective momentum ) is 

 

Using the wave function that we solved before 

 

The NLO wave function can be expanded in terms of the LO wave function 

̂Pi(t) = ∫ d3xT0i( ⃗x, t) = ∫ d3x (−F0α( ⃗x, t)Fi
α( ⃗x, t)) = − ∫

d3k
(2π)3

F0α(− ⃗k, t)Fi
α( ⃗k, t)

̂pi,ph( ⃗k) ≡ −
1

2(2π)3 (F0α(− ⃗k)Fi
α( ⃗k) + h . c . )

| ⃗Q⟩s
⃗Q ≡ ⃗P − 2m ⃗v

GQ,i( ⃗k) ≡ ⟨ ̂pi( ⃗k)⟩ = −
1

2(2π)3 ∫
dk0dk′ 0

(2π)2 s⟨ ⃗Q |(F0α (−k0, − ⃗k) Fi
α (k′ 0, ⃗k) + h . c . ) | ⃗Q⟩s

⟨ ⃗Q | ̂pi( ⃗k) | ⃗Q⟩ = ∫
d3q′ 

(2π)3 ∫
d3q

(2π)3 ∫
d3k′ 

(2π)3 ∫
d3k

(2π)3
φ(2)*

⃗Q ( ⃗q′ , ⃗k′ ) φ(2)
⃗Q
( ⃗q, ⃗k)⟨e−

s1
, e+

s2
, γ ( ⃗k′ ) ∣ ̂pi( ⃗k) ∣ e−

s1
, e+

s2
, γ( ⃗k)⟩

φ(2)
⃗Q ( ⃗q2, ⃗k) =

1
ΔEI ∫

d3q′ 

(2π)3

⟨e−
s1

( ⃗q1), e+
s2

( ⃗q2 − ⃗k), γ( ⃗k) |V |e−
s1

( ⃗Q − ⃗q′ ), e+
s2

( ⃗q′ )⟩
N

φ(1)
⃗Q ( ⃗q′ )



Photon Momentum Distribution
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We know that 

 

The first term above can be expressed in terms of four connected time-ordered diagrams, one of which is 

 

Using the Feynman rules, we have the expression 

 

Similarly, the second term has contribution 

F0α(− ⃗k)Fi
α( ⃗k) = k0kiÃα(− ⃗k)Ãα( ⃗k)+kαkαÃ0(− ⃗k)Ãi( ⃗k)

G1 ( ⃗k, ⃗q2) =
−1

2(2π)3

1
ΔEI1

1
ΔEI2

1

(v0)2 φ* ⃗Q ( ⃗q2) [k0kiDαμDν
α(−e)vμ(e)vν] φ ⃗Q ( ⃗q2 + ⃗k)

G2 ( ⃗k, ⃗q2) =
−1

2(2π)3

1
ΔEI

1

(v0)2 φ* ⃗Q ( ⃗q2) [ | ⃗k |2 D00Diν(e)v0(e)vν] φ ⃗Q ( ⃗q2 + ⃗k)



Photon Momentum Distribution
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The photon momentum distribution in a relativistic positronium is 

 

 

 

We know the COM wave function of positronium 

 

The final results in the momentum space is 

GQ,∥( ⃗k) =
α
π2

1

(β2k2
∥ − | ⃗k |2 )2

β | ⃗k⊥ |2 ∫
d3 ⃗q2

(2π)3
|φ ⃗Q ( ⃗q2) − φ ⃗Q ( ⃗q2 + ⃗k) |2

If we take the light-cone limit γ → ∞ and β → 1, it is consistent with the result in literature

GQ,∥(x, ̂k⊥) =
α
π2

̂k2
⊥

(( ̂k2
⊥)2 + (2mvx)2)

2 ∫
d2 ̂q2⊥

(2π)2 ∫
dy
2π

|φ0⃗(y, ̂q2⊥) − φ0⃗(y, ̂q2⊥ + ̂k⊥) |2 ,

φ ⃗Q ( ⃗q) =
1
γ

φ0⃗( ̂q) =
1
γ

512π
α3m3 [1 + ( 2 | ̂q |

αm )
2

]
−2

GQ,∥( ̂k) =
2α
π2

1
( ̂k2

∥ + ̂k2
⊥)2

β ̂k2
⊥ 1 − (1 +

| ̂k |2

α2m2 )
−2

M. Burkardt, Nucl.Phys.B 373 (1992)

It is proportional to , so it vanishes in .β β → 0

Note the factor of 4 comes from h.c. term and 
symmetry factor of the diagrams.



Photon Momentum Distribution
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Fourier transform to the coordinate space and rescale the conjugate coordinate of  as  

 

In the region , it can be simplified as  

                       

The existence of such a dipole term is not surprising  

The monopole vanishes because there is no on-shell radioactive photon 

While the dipole is forbidden by the spatial rotational symmetry in the static case, the relativistic motion breaks the 

Lorentz symmetry, which allows the existence of dipole.

̂k ̂r ≡ αm ⃗r = (b̂⊥, ̂z)

(2π)3

βα2m
G̃Q,∥( ̂r) =

16 ̂z2 − 8 | b̂⊥ |2

| ̂r |5 +
2e−| ̂r|

| ̂r |5 [ | b̂⊥ |4 ( | ̂r | + 3) + | b̂⊥ |2 ( ̂z2 + 4)( | ̂r | + 1) − 2 ̂z2(4 | ̂r | + ̂z2 + 4)]
̂r ≫ 1

(2π)3

βα2m
G̃Q,∥( ̂r) ≈

16 ̂z2 − 8 | b̂⊥ |2

| ̂r |5

It is a dipole shape.



Summary
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In this work, we computed the photon momentum distribution in relativistic positronium; 

The analysis is carried out using Fock state expansion and effective field theory within the framework of old-fashioned 

perturbation theory; 

In the center-of-mass frame, the photon momentum distribution vanishes at leading order. However, in the relativistic case, 

we find that the distribution exhibits a dipole shape in the long-range region ( ) of coordinate space; 

The computed photon momentum distribution approaches the same ultra-relativistic limit ( ) as found in the reference.

̂r ≫ 1

γ → ∞



Thank you
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Backup
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Bethe-Salpeter Equation
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The correlation function is , 2PI represents 2-point irreducible kernel , and the free propagator is 

denoted as . Then we have iterative equation . 

 

We can give an ansatz of the 4-point correlation function near the pole of  as . 

Substituting the ansatz into the iterative equation, and taking the residual at both sides, we get 

G = ⟨Ω | ψ̄ ψ ψ̄ ψ |Ω⟩ K

S G = S1S2 + S1S2K12G

M G ≈
φ̄ ⃗P φ ⃗P

P2 − M2

φ ⃗P = S1S2K12φ ⃗P



Reprameterization Symmetry
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In the EFT for relativistic positronium, the fermion momentum is divided into two parts, this division introduces some 
ambiguities which should not affect physical results.  

Based on this argument, the Lagrangian should remain invariant under the reparameterization transformation 

 

Take the scalar field as an example, under the reparameterization transformation, we have  

 , in which  and  

If we rename the variable , the RHS above becomes 

 

To keep the Lagrangian term invariant, we can construct the invariant velocity as , which is the only quantity 

which respects reparameterization symmetry at order . 

To construct a Lorentz scalar in terms of the invariant velocity, we have 

 

The reparameterization symmetry can be understood as the residual effect of the Lorentz symmetry.

p = mv + q → p = m (v +
l
m ) + (q − l)

ϕ*v [ f(v, iD)]ϕv → ϕ*w[ f(v, iD + l)]ϕw ϕw = eil⋅xϕv w = v + l/m

w → v

ϕ*v [ f(v − l/m, iD + l)]ϕv

Vμ = vμ +
iDμ

m
𝒪(α)

(mV )2 = m2 + 2m(iD ⋅ v) + (iD)2 = m2 + 2m ((iD ⋅ v) +
(iD)2

2m )



Spin Wave Function
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Connection to TMDs
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We can change another point of view to understand the photon momentum operator. 

,  

where  and . 

In comparison, the Wigner function is defined as  

  

The TMDs, which is the distribution function in momentum space, are defined as 

 

It is obvious that the photon momentum operator has a form similar to that of the TMD distributions that describe the 
hadron inner structure. Although QCD bound states cannot be perturbatively expanded as positronium because of the non-
perturbative scale , the connections between this paper and TMD physics are still worth investigating in the future.

Ã(− ⃗k)Ã( ⃗k) = ∫ d3x1 ∫ d3x2 A( ⃗x1)ei ⃗k⋅ ⃗x1A( ⃗x2)e−i ⃗k⋅ ⃗x2 = ∫ d3X∫ d3x A ( ⃗X +
⃗x

2 ) A ( ⃗X −
⃗x

2 ) ei ⃗k⋅ ⃗x

⃗X = ( ⃗x1 + ⃗x2)/2 ⃗x = ( ⃗x1 − ⃗x2)

W ( ⃗R , ⃗k) = ∫ d3Δ ⃗r ψ* ( ⃗R +
Δ ⃗r
2 ) ψ ( ⃗R −

Δ ⃗r
2 ) ei ⃗k⋅Δ ⃗r

n ( ⃗k) ≡ ∫ d3 ⃗R W ( ⃗R , ⃗k)

ΛQCD


