NUCLEON PARTON DISTRIBUTION FUNCTIONS FROM BOOSTED CORRELATORS IN CG

Jinchen He

GHP Meeting

2025/03

1

Introduction

- ✦ Parton Physics & PDFs
- ✦ Lattice QCD Calculations of PDFs

Methodology

- ✦ LaMET
- Coulomb Gauge (CG) Method

Lattice Calculation with the CG Method

- + Lattice Matrix Elements
- ✦ Renormalization
- Unpolarized and Helicity Nucleon PDFs

Summary

Visible Universe

- Only 5% of the universe is visible. 0
- 0

Many experiments have been designed to probe the internal structure of nucleons. 0

HERA

Spergel, David N. "The dark side of cosmology: Dark matter and dark energy." Science 347.6226 (2015): 1100-1102.

The visible universe is made up of protons and neutrons, the inner structure of nucleons are sophisticated if we step closer.

© 2012 Encyclopædia Britannica, Inc.

electrons

P.S. The list of experiments here is not complete.

EIC

Cr. CERN

Cr. BNL

Parton Physics

- **Our knowledge on proton is still limited:** 0
 - Spin, mass ... 0
 - How to describe a relativistic moving strong-coupled bound state? 0
- The language from Feynman: Parton Model in the infinite momentum frame 0
 - Quarks and gluons (partons) are ``frozen" in the transverse plane; 0
 - **During a hard collision, the struck parton appears like a free particle.** 0

Cr. Dave Gaskell

The many faces of the proton

QCD bound state of quarks and gluons

Parton Distribution Functions (PDFs)

• Unpolarized PDF $f(x, \mu)$: probability distribution

$$i = u, d, c, s, t, b$$

$$xP \rightarrow P$$

$$i = g$$

Helicity PDF $g(x, \mu)$: parton contribution to the hadron spin 0

Transversity PDF $h_1(x, \mu)$: parton contribution to the 0 transverse polarization of hadron

Global Analysis of PDFs

Since PDFs are universal and useful in scattering processes, many efforts have been spent in extracting PDFs from 0 experimental data.

T. J. Hou, et al., Phys. Rev. D 103 (2021)

Parameterization form as prior of fit

 $f_i(x, Q_0) = a_0 x^{a_1 - 1} (1 - x)^{a_2} P_i(y; a_3, a_4, \dots)$

R. D. Ball, et al. [NNPDF], Eur. Phys. J. C 82 (2022)

 $xf_k(x, Q_0; \boldsymbol{\theta}) = A_k x^{1-\alpha_k} (1-x)^{\beta_k} NN_k(x; \boldsymbol{\theta})$

Lattice QCD Calculation of PDFs

- As a first-principle non-perturbative method, Lattice QCD provides independent predictions of PDFs. 0
 - **Mellin Moments** 0
 - Up to $\langle x^3 \rangle$ C. Alexandrou, et al., Phys. Rev. D 92 (2015); G. S. Bali, et al., Phys. Rev. D 98 (2018); ...
 - **Smeared operators for higher moments** Ο
 - **Gradient Flow for higher moments** 0
 - Large Momentum Effective Theory (LaMET) (quasi-PDF) 0
 - **Short Distance Expansion** 0
 - **Pseudo PDF / Ioffe-time distribution** 0
 - **Current-current correlator** 0
 - **Operator Product Expansion (OPE)** 0
 - **Compton amplitude** 0
 - **Heavy-quark Operator Product Expansion (HOPE)**
 - Hadronic Tensor 0 K. F. Liu, Phys. Rev. D 62 (2000); K. F. Liu, and S. J. Dong, Phys. Rev. Lett. 72 (1994); ...

Z. Davoudi, M. J. Savage, Phys. Rev. D 86 (2012); ...

A. Shindler, Phys. Rev.D 110 (2024); A. Francis, et al., PoS LATTICE2024, 336 (2025); ...

X. Ji, Phys.Rev.Lett. 110 (2013); X. Ji, et al., Rev.Mod.Phys. 93 (2021); X. Gao, et al., Phys. Rev. Lett. 128 (2022); ...

A. V. Radyushkin, Phys. Rev. D 96 (2017); C. Alexandrou, et al., Phys. Rev. D 98 (2018); ...

V. M. Braun, et al., Nucl. Phys. B 685 (2004); V. M. Braun, et al., Eur. Phys. J. C 55 (2008); R. S. Sufian, et al., Phys. Rev. D 102 (2020); ...

A. J. Chambers, et al., Phys. Rev. Lett. 118 (2017); M. Gockeler, et al. [QCDSF], Phys. Rev. Lett. 92 (2004); ...

W. Detmold, and C. J. David Lin, Phys. Rev. D 73 (2006); W. Detmold, et al. [HOPE], Phys. Rev. D 105 (2022); ...

Large-Momentum Effective Theory(LaMET)

PDF is defined from a light-cone correlator in a hadron, which is Lorentz invariant. 0

$$f_{\Gamma}(x,\mu) = \int_{-\infty}^{\infty} \frac{d\lambda}{2\pi} e^{-i\lambda x} \frac{1}{2P^{+}} \left\langle P \left| \bar{\psi} \left(\xi^{-} \right) W \left(\xi^{-} \right) \right\rangle \right\rangle \right\rangle$$

0

LaMET enables us to obtain the precision-controlled x-distribution of PDFs in $x \in [x_{\min}, x_{\max}]$. 0

Pert. matching kernel

$$f(x,\mu) = C\left(\frac{y}{x},\frac{P^z}{\mu}\right) \otimes \tilde{f}\left(\frac{y}{x},\frac{P^z}{\mu}\right)$$

Nucleon PDFs from LaMET

In recent years, a lot of improvements of renormalization and matching has been developed in LaMET; 0

- 0 systematics from:
 - Hadron momentum is not large enough; 0
 - **Excited-state contamination;** 0
 - Other lattice systematics, like discretization effects, non-physical pion mass, finite volume effects ... 0

Y. Su, et al., Nucl. Phys. B 991 (2023); R. Zhang, et al., Phys. Lett. B 844 (2023); *X. Ji, et al.*, 2410.12910 [hep-ph]

J. Holligan and H. W. Lin, Phys. Lett. B 854 (2024)

Existing calculations of the nucleon PDFs still deviate from the global analyses, which is possibly due to the

Coulomb Gauge Method

• Define a quasi distribution in CG without Wilson line: X. Gao,

$$\tilde{f}_{CG}^{0}(y, P^{z}, \mu) = P^{z} \int \frac{dz}{2\pi} e^{iz(yP^{z})} \frac{1}{2P^{t}} \langle P | \bar{\psi}_{0}(z) \Gamma \psi_{0}(0) |_{z}$$

- Why choose CG?
 - $\overrightarrow{\nabla} \cdot \overrightarrow{A} = 0$ becomes $A^+ = 0$ in the infinite boost, so the quasi distribution in CG belongs to the universality class in LaMET;
 - No linear divergence / linear renormalon;
 - Simplified renormalization $\bar{\psi}_0(z)\Gamma\psi_0(0) = Z_{\psi}(a)\left[\bar{\psi}(z)\Gamma\psi(0)\right];$
 - Larger off-axis momenta (3D rotational symmetry).

The results in CG and GI are consistent with the same lattice setup.

X. Gao, W. Y. Liu and Y. Zhao, PRD 109 (2024)

Lattice Setup for Nucleon Calculation

- 2+1 flavor HISQ ensemble by HotQCD with volume $L_s \times L_t = 48^3 \times 64$; 0
- Lattice spacing is a = 0.06 fm; 0
- Pion mass of sea quark: $m_{\pi}^{\text{sea}} = 160 \text{ MeV};$
- **Pion mass of valence quark:** $m_{\pi}^{\text{val}} = 300 \text{ MeV}$; 0
- **Off-axis** $(\vec{n} = (1,1,0))$ hadron momenta: 2.43 GeV and 3.04 GeV; 0
- Statistics for each lattice correlator: 553 (configs) \times 256 (inversions) \times 2 (±*z* directions) = 283,136; 0
- Gauge fixing criterion: variation of functional satisfies $\delta F/F < 10^{-8}$. 0

Ground State Fit

• Ratio of three-point and two-point correlators

$$R\left(t_{\text{sep}},\tau\right) = \frac{C_{3\text{pt}}(t_{\text{sep}},\tau)}{C_{2\text{pt}}(t_{\text{sep}})} = \frac{\sum_{n,m} z_n O_{nm} z_m^{\dagger} \cdot e^{-E_n \left(t_{\text{sep}}-\tau\right)} e^{-E_m \tau}}{\sum_n z_n z_n^{\dagger} \cdot \left(e^{-E_n t_{\text{sep}}} + e^{-E_n (L_t - t_{\text{sep}})}\right)}} \xrightarrow{t_{\text{sep}}, \tau, (L_t - t_{\text{sep}}) \to \infty} O_{00}$$

o Feynman-Hellmann (FH) inspired Method C. Bouchard, et al., Phys. Rev. D 96 (2017)

$$\operatorname{FH}\left(t_{\operatorname{sep}},\tau_{\operatorname{cut}},dt\right) \equiv \frac{\sum_{t=\tau_{\operatorname{cut}}}^{t=t_{\operatorname{sep}}+dt-\tau_{\operatorname{cut}}} R\left(t_{\operatorname{sep}}+dt,t\right) - \sum_{t=\tau_{\operatorname{cut}}}^{t=t_{\operatorname{sep}}-\tau_{\operatorname{cut}}} R\left(t_{\operatorname{sep}},t\right)}{dt} \xrightarrow{t_{\operatorname{sep}},\tau, (L_t-t_{\operatorname{sep}})\to\infty} O_{00}$$

The ratio fit and FH fit are consistent.

Cancellation of excited-state contamination.

 χ^2 /d.o.f. < 1.2 of FH Fit

Keep generating more tsep...

Non-perturbative Renormalization

- 0 defined as $\bar{\psi}_0(z)\Gamma\psi_0(0) = Z_{\psi}(a)\left[\bar{\psi}(z)\Gamma\psi(0)\right];$
- Thus, we adopt the hybrid scheme as below, which does not introduce IR effects in the non-perturbative region: 0

$$\tilde{h}_{\Gamma}\left(z,P^{z},z_{s}\right)=N\frac{\tilde{h}_{\Gamma}^{0}\left(z,P^{z},a\right)}{\tilde{h}_{\Gamma}^{0}(z,0,a)}\theta\left(z_{s}-\left|z\right|\right)+N\frac{\tilde{h}_{\Gamma}^{0}\left(z,P^{z},a\right)}{\tilde{h}_{\Gamma}^{0}\left(z_{s},0,a\right)}\theta\left(\left|z\right|-z_{s}\right),$$

where $N = \tilde{h}_{\Gamma}^0(0,0,a)/\tilde{h}_{\Gamma}^0(0,P^z,a)$ and $a \ll z_s \ll 1/\Lambda_{\text{OCD}}$

0

Because of the absence of Wilson line, the CG correlation is free from linear divergence, the renormalized operator can be

X. Ji, et al., Nucl. Phys. B 964 (2021)

Note that $\tilde{h}^0_{\Gamma}(z,0,a)$ has real part only, which is used to renormalize both the real and imaginary parts of $\tilde{h}^0_{\Gamma}(z, P^z, a)$.

The scheme dependence will be cancelled by the hybrid-scheme matching kernel that relates the quasi-PDF to the PDF.

Fourier Transform

- Ο fluctuations after Fourier transform;
- 0
- Since quasi-PDF (in moderate x) is insensitive to the extrapolation strategies, the non-fit extrapolation is adopted here: 0

The CG matrix elements decay to zero while the error bars remain almost constant, making the FT easy to be under control. Ο

Due to the statistical uncertainty, the quasi-PDF in the large $\lambda = zP^z$ has a finite error bar, which will introduce unphysical

X. Gao, et al., Phys. Rev. Lett. 128 (2022)

Because of the finite correlation length, the quasi-PDF in coordinate space should decay exponentially in the large z region ($z \sim 1$ fm); $\tilde{h}^{ext} = w \cdot \tilde{h} + (1 - w) \cdot 0$, where the weight w(z) linearly decays from 1 to 0 within two red dashed lines below.

Matching to PDFs

The matching formula for the hybrid-scheme quasi-PDFs 0

$$f(x,\mu) = C\left(\frac{x}{y}, \frac{P^z}{\mu}, z_s\right) \otimes \tilde{f}\left(y, \frac{P^z}{\mu}, z_s\right) + O\left(\frac{\Lambda_{\text{QCD}}^2}{(xP^z)^2}, \frac{\Lambda_{\text{QCD}}^2}{((1-x)P^z)^2}\right)$$

- The matching kernel is calculated using both 0
 - the fixed-order NLO perturbation theory ($\mu = 2 \text{ GeV}$) 0
 - renormalization group resummed (RGR) NLO perturbation theory (evolve from $\mu \sim 2xP^z$ to $\mu = 2$ GeV) 0
- The scheme dependence on z_s is cancelled by the matching. 0

Y. Su, et al., Nucl. Phys. B 991 (2023);

Unpolarized Quark Isovector PDF of Proton

- 0
- 0 and the helicity PDFs, which provides encouraging evidence for the efficacy of the CG method;
- 0
- 0 renormalization of the imaginary part of quasi PDF matrix elements, which exist in GI method as well;
- This work also serves as an examination of universality in LaMET. 0

The fixed-order and RGR matchings show an aligned behavior at moderate x, where LaMET can make reliable prediction;

Comparing with the NNPDF results, CG method gives a consistent prediction on the valence part of both the unpolarized

The small deviation of the valence part might be caused by the excited-state contamination and other lattice systematics;

The deviation of $(q + \bar{q})/2$ from the NNPDF results may be caused by systematics from excited-state contaminations and

16

Helicity Quark Isovector PDF of Proton

- 0
- 0 and the helicity PDFs, which provides encouraging evidence for the efficacy of the CG method;
- 0
- 0 renormalization of the imaginary part of quasi PDF matrix elements, which exist in GI method as well;
- This work also serves as an examination of **universality** in LaMET. 0

The fixed-order and RGR matchings show an aligned behavior at moderate x, where LaMET can make reliable prediction;

Comparing with the NNPDF results, CG method gives a consistent prediction on the valence part of both the unpolarized

The small deviation of the valence part might be caused by the excited-state contamination and other lattice systematics;

The deviation of $(\Delta q - \Delta \bar{q})/2$ from the NNPDF results may be caused by systematics from excited-state contaminations and

Summary

- This is the first lattice calculation of the proton PDFs using the CG method; 0
- 0 **distribution**, while the slight deviations are likely due to the excited-state contaminations;
- 0 state contaminations and renormalization;
- 0

Our results for both the unpolarized and helicity PDFs show encouraging agreement with NNPDF at moderate x of valence

The imaginary part corresponds to the distribution of $(q + \bar{q})/2$, which is likely more sensitive to systematics from excited-

We are increasing our lattice statistics at larger source-sink separations to further control the excited-state effects.

Gauge Fixing in Lattice QCD

Continuous Theory

$$F_{\text{CG}}[A,\Omega] \equiv \frac{1}{2} \sum_{\mu=1}^{3} \int d^4 x A^a_{\Omega\mu}(x) A^{\mu a}_{\Omega}(x)$$

$$\begin{split} \delta F_{\text{CG}}[A,\Omega] &= -\sum_{\mu=1}^{3} \int d^{4}x (D^{\Omega}_{\mu ab}\theta_{b}) A^{\mu a}_{\Omega} \\ &= -\sum_{\mu=1}^{3} \int d^{4}x (\partial_{\mu}\theta_{a} - gf^{cab}A^{c}_{\Omega\mu}\theta_{b}) A^{\mu a}_{\Omega} \\ &= \sum_{\mu=1}^{3} \int d^{4}x \theta_{a} (\partial_{\mu}A^{\mu a}_{\Omega}) \end{split}$$

$$*A_{\Omega\mu}(x) \equiv \Omega^{\dagger}(x)A_{\mu}(x)\Omega(x) + \frac{i}{g}\Omega^{\dagger}(x)\partial_{\mu}\Omega(x)$$

Lattice Theory

$$F_{\text{CG}}[U,\Omega] \equiv -\Re \left[\operatorname{Tr} \sum_{x} \sum_{\mu=1}^{3} \Omega^{\dagger}(x+\hat{\mu}) U_{\mu}(x) \Omega(x) \right]$$

Find stationary points of the functional value.

 $A^{\mu a}_{\Omega}$

Gribov Copies

• The gauge fixing condition may have many solutions in Lattice QCD.

Ph. D. Thesis of Diego Fiorentini

Criteria of Gauge Fixing

• Variation of the functional

o Residual gradient of the functional

$$\theta^{G} \equiv \frac{1}{V} \sum_{x} \theta^{G}(x) \equiv \frac{1}{V} \sum_{x} \operatorname{Tr} \left[\Delta^{G}(x) \left(\Delta^{G} \right)^{\dagger}(x) \right] \\ * \Delta^{G}(x) \equiv \sum_{\mu} \left(A^{G}_{\mu}(x) - A^{G}_{\mu}(x - \hat{\mu}) \right)$$

Different Gribov copies can be distinguished by the difference of functional values ΔF .

$\delta F/F < 10^{-8}$

Coulomb Gauge Method

Define a quasi correlator in CG without Wilson line, which belongs to the universality class in LaMET: 0

$$\tilde{f}_{CG}^{0}(y, P^{z}, \mu) = P^{z} \int \frac{dz}{2\pi} e^{iz(yP^{z})} \frac{1}{2P^{t}}$$

- Why choose CG? 0
 - CG becomes light-cone gauge in the infinite boost 0
 - **No linear divergence / linear renormalon** 0
 - Simplified renormalization $\bar{\psi}_0(z)\Gamma\psi_0(0) = Z_{\psi}\left[\bar{\psi}(z)\Gamma\psi(0)\right]$ Ο
 - Larger off-axis momenta (3D rotational symmetry) 0

X. Ji, Y. S. Liu, Y. Liu, J. H. Zhang and Y. Zhao, RMP 93 (2021)

 $\frac{1}{z} \langle P | \bar{\psi}_0(z) \Gamma \psi_0(0) |_{\overrightarrow{\nabla} \cdot \overrightarrow{A} = 0} | P \rangle$

