Preliminary Results

Imaging of the Pion on a Fine Lattice

Jinchen He

Co-PIs: Dennis Bollweg, Xiang Gao, Swagato Mukherjee, Peter Petreczky, Rui Zhang

and Yong Zhao

University of Maryland, College Park

University of Maryland, College Park

Imaging of the Pion on a Fine Lattice

Jinchen He

1= 990

2 Our Proposal

3 Preliminary Results

University of Maryland, College Park

Imaging of the Pion on a Fine Lattice

Our Proposal

Preliminary Results

Ending 00000

3D Imaging of Hadrons

From Y. Zhao

University of Maryland, College Park

Jinchen He

Imaging of the Pion on a Fine Lattice

1

Global fitting: limited data points to fit r	nulti-dimensional functions.
	< • > < /
Jinchen He	Univ
Imaging of the Pion on a Fine Lattice	

University of Maryland, College Park 4/23

Boussarie, et al. 2304.03302

- Our knowledge is still limited.
- Distribution densities to find a parton with specific momentum;
- ٠
- Related to the cross section of TMD processes;

Motivation

TMDPDFs

٠

0000

Ending

Pion TMDPDFs

Our Proposal

Preliminary Results

Ending 00000

By APS/Alan Stonebraker

- Physically: pseudo-Goldstone boson; chiral symmetry breaking
- Numerically: best signal on lattice; easy to get large Lorentz factor; benchmark for other hadrons
- Experimentally: Pion-induced Drell-Yan process of FNAL and COMPASS(CERN)

= 990

2 Our Proposal

3 Preliminary Results

University of Maryland, College Park

Imaging of the Pion on a Fine Lattice

- Light-cone distribution: separate in time direction, universal.
- Quasi-distribution: equal time, P^z dependent.

Motivation	Our Proposal	Preliminary Results	Ending
	00000000		
Lattice Setup			

- Volume: $48^3 \times 64$ with a = 0.06 fm, generated by HotQCD;
- Sea quark: $N_f = 2 + 1$ Highly Improved Staggered Quark (HISQ) action with physical quark masses;
- Valence quark: Wilson-Clover action on 1-step hypercubic (HYP) smeared gauge configurations, valance pion mass $m_{\pi} = 300$ MeV;
- Hadron momentum: $P_z = \{1.29, 1.72, 2.15\}$ GeV;
- Multiple exact and sloppy Dirac operator inversions using All-Mode Averaging (AMA);
- Boosted Gaussian smearing for quarks to achieve better overlap with boosted hadrons (Radius ≈ 0.59 fm, $m_q \approx 0.7 m_{\pi}$).

▲ 王 ▶ 王 王 ♪ � �

H. T. Ding, et al. 2404.04412

- HotQCD: HISQ + Wilson-clover + HYP, $m_{\pi} = 140$ MeV, a = 0.076 fm, V = $64^3 \times 64$;
- Boosted Gaussian smearing helps to reach very large $Q^2 \sim 10 \text{ GeV}^2$.

The quasi-TMD matrix elements of the pion under CG are defined as

$$\tilde{h}_{\Gamma}(b_{\perp},z,\mu,P^z) = \langle \pi^+; P_z | \overline{\psi}(\frac{b_{\perp}}{2},\frac{z}{2}) \Gamma \psi(-\frac{b_{\perp}}{2},-\frac{z}{2}) |_{\nabla \cdot \vec{A}=0} | \pi^+; P_z \rangle$$

University of Maryland, College Park

Jinchen He

Imaging of the Pion on a Fine Lattice

Our Proposal

Preliminary Results

Ending 00000

CG v.s. GI: Simple Renormalization

The renormalization of the quark correlator is simply multiplicative and z-independent, take the pion quasi-PDF as an example:

 $\bar{\psi}_B(z)\Gamma\psi_B(0)=Z_\psi(a)\left[\bar{\psi}(z)\Gamma\psi(0)\right]_{\rm R}$

X. Gao, et al. 2306.14960

- HotQCD: HISQ + Wilson-clover + HYP, $m_{\pi} = 300$ MeV, $a = \{0.04, 0.06\}$ fm, V = $\{64^3 \times 64, 48^3 \times 64\}$;
- $\tilde{h}(z, a)/\tilde{h}(z_0, a)$ should be independent of *a*, i.e. no linear div.

Pion quasi-TMDWF with CG and GI approaches.

D. Bollweg, et al. 2403.00664

- DWF: Mobius DW + Iwasaki, physical m_{π} , a = 0.0836 fm, $V = 64^3 \times 128 \times 12$;
- CG has much better signal than GI;
- CG has smaller tail at large z, does not need extrapolation.

Our Proposal

Preliminary Results

Ending 00000

CS Kernel Extracted from Quasi-TMDWF

$$K\left(b_{\perp},\mu\right) = \frac{1}{\ln\left(P_{1}^{z}/P_{2}^{z}\right)} \ln \frac{H^{\pm}\left(xP_{2}^{z},\mu\right)\tilde{\Psi}^{\pm}\left(x,b_{\perp},\mu,P_{1}^{z}\right)}{H^{\pm}\left(xP_{1}^{z},\mu\right)\tilde{\Psi}^{\pm}\left(x,b_{\perp},\mu,P_{2}^{z}\right)}$$

D. Bollweg, et al. 2403.00664

- Quasi-TMDWF has a good behavior even for large $b_{\perp} \sim 0.85$ fm;
- The x-independent CS kernel can be extracted from good plateaus in x.

Our Proposal

Preliminary Results

Ending 00000

CS Kernel Results

A. Avkhadiev, et al. 2402.06725 (ASWZ24)

- MILC: HISQ + Symanzik, physical m_{π} , $a = \{0.09, 0.12, 0.15\}$ fm, V = $\{64^3 \times 96, 48^3 \times 64, 32^3 \times 48\}$;
- Good consistency with the state-of-the-art GI lattice calculation;
- Good consistency with phenomenological results;
- Smaller uncertainties to reach the large separation region.

Intrinsic soft function			
	00000000		00000
Motivation	Our Proposal	Preliminary Results	Ending

$$\begin{array}{c} \tilde{f}_i(x,b_{\perp},\mu,P^z) \\ \hline \\ \text{Soft function} \end{array} = C_q(\mu,xP^z) \exp\left[\frac{1}{2}K_q(b_{\perp},\mu)\ln\frac{(2xP^z)^2}{\zeta}\right] f_i(x,b_{\perp},\mu,\zeta) \\ \end{array}$$

The soft function can be extracted from the quasi-TMDWFs (*D. Bollweg, et al.* 2403.00664) and the light-meson form factor F (*Q. A. Zhang, et al.* (*LPC*) *PRL* 125 (2020)).

$$S_{r}(b_{\perp},\mu) = \frac{F(b_{\perp},P_{1},P_{2},\Gamma,\mu)}{\int dx_{1}dx_{2}H(x_{1},x_{2},\Gamma)\tilde{\Psi}_{CG}^{\pm}(x_{2},b_{\perp},P^{z})\tilde{\Psi}_{CG}^{\pm}(x_{1},b_{\perp},P^{z})}$$

$$F(b_{\perp},P_{z}) = \left\langle \pi(-\vec{P}) \left| \bar{q}(b_{\perp})\Gamma q(b_{\perp})\bar{q}(0)\Gamma' q(0) \right| \pi(\vec{P}) \right\rangle$$

University of Maryland, College Park

< □ > < 同

Imaging of the Pion on a Fine Lattice

Jinchen He

三日 のへで

Motivation	Our Proposal	Preliminary Results	Ending
		•00	

Our Proposal

3 Preliminary Results

< ロト < 部 > < 三 > < 三 > < 三 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

University of Maryland, College Park

Jinchen He Imaging of the Pion on a Fine Lattice

2pt of Pion

Our Proposal

Preliminary Results

Ending 00000

Dispersion relation: $E^2 = m^2 + c_1 P^2 + c_2 a^2 P^4$

- Good signal-to-noise ratio even for large momentum;
- Fit results: $c_1 = 1.16(13)$ and $c_2 = -0.10(15)$.

University of Maryland, College Park

Jinchen He

Imaging of the Pion on a Fine Lattice

Motivation	Our Proposal	Preliminary Results	Ending
0000	000000000	00●	00000
Bare Quasi-TMDPD	F		

The preliminary results (100 configurations) of pion quasi-tmdpdf with momentum $P^{z} = 1.8$ GeV.

- Good signal-to-noise ratio even for large b_{\perp} ;
- Small tails at long range, easy to extrapolate.

18/23

Motivation 0000	Our Proposal 000000000	Preliminary Results	Ending ●0000
Estimated Cost			

Task	Symbol	Time (sec.)
Extended source/sink creation	t _{ext}	17
MG light-quark inversion sloppy	t_{inv}^l	17
MG light-quark inversion exact	$t_{\rm inv}^l$	26
Contraction for pion 2pt function	$t_{2\text{pt}}^{\pi}$	13
Contraction for 3pt function for quasi-TMD	t_{3pt}^{TMD}	0.25×25^2

Table 1: Times needed for various parts of the calculations on the $48^3 \times 64$, a = 0.06 fm lattice, with $m_{\pi} = 300$ MeV, using 1 node of Polaris at ALCF (4 A100 cards).

Motivation	Our Proposal	Preliminary Results	Ending
0000	000000000		0●000
Resource Request			

The time of the calculations on a single gauge configuration and one source is

$$t = N_{\text{mom}} \times \left(2t_{\text{inv}}^{l} + 2t_{\text{2pt}}^{\pi} + 4t_{\text{ext}} + (t_{\text{inv}}^{l} + t_{\text{ext}} + t_{\text{3pt}}^{\text{TMD}}) \times N_{\text{sep}}\right)$$

Computaional Resources:

• 105k GPU hours on FNAL

Storage Resources:

- 50 TB disk storage
- 100 TB long-term storage

Jinchen He

= 990

Motivation	Our Proposal	Preliminary Results	Ending
0000	000000000	000	00●00
Summary			

- Pion TMDs are important for understanding the chiral symmetry breaking and QCD structure, it is also a good benchmark;
- Coulomb gauge method has significant advantages in the lattice calculation of TMDs, especially in large separation region (b_⊥ ≥ 1fm);
- Our methods and technologies have been examed in many previous works, we are able to calculate the pion TMDs with controllable uncertainties.

= 990

Q. Systematics from using meson form factors in literature?

A. Soft function can be checked by comparing with perturbative results; a 25% error is still meaningful.

Q. Compute the pion quasi-TMD with the standard gauge invariant definition?

A. Yes, they share the same quark propagators, will do partial computation.

Q. Preliminary results to demonstrate the computational effectiveness? A. Pion PDF; Pion quasi-TMDWF & CS kernel; Preliminary 2pt and 3pt results of Pion TMDPDF.

Q. Estimation of how the noise increases with each unit of momentum? A. Effective mass and dispersion relation plots.

◆□▶ ◆帰▶ ◆ヨ▶ ◆ヨ▶ ヨヨ のへで

Thank You For Attention!

University of Maryland, College Park

Imaging of the Pion on a Fine Lattice

Jinchen He

23/23

= 990 C

Task	Symbol	Time (sec.)
Extended source/sink creation	t _{ext}	10
MG light-quark inversion sloppy	$t_{\rm inv}^l$	26
MG light-quark inversion exact	$t_{\rm inv}^l$	50
Contraction for kaon 2pt function	$t_{2\text{pt}}^{\pi}$	10
Contraction for 3pt function for FF	t_{3pt}^{FF}	4

Table 2: Timings using 16 nodes of the BNL IC cluster (32 K80 cards)

University of Maryland, College Park

Jinchen He

Imaging of the Pion on a Fine Lattice

ELE OQO

Backup: Gribov Copies - Quasi Pion PDF

- Mainly affect the gauge propagator
- Lattice Gribov noise + measurement distortion

Figure 1: The ratio of quasi pion PDF from two sets of Gribov copies.

University of Maryland, College Park

Backup: Gribov Copies - Quark Spatial Propagator

Figure 2: The error of effective mass at z = 10 a as a function of number of configurations N. The grey band shows the expected error that decreases as $1/\sqrt{N}$.

Backup: GI Quasi-TMDPDF

University of Maryland, College Park

Imaging of the Pion on a Fine Lattice

Jinchen He

1