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Global fitting: limited data points to fit multi-dimensional functions.
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Pion TMDPDFs

By APS/Alan Stonebraker

® Physically: pseudo-Goldstone boson; chiral symmetry breaking

® Numerically: best signal on lattice; easy to get large Lorentz factor; benchmark
for other hadrons

e Experimentally: Pion-induced Drell-Yan process of FNAL and
COMPASS(CERN)
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Large Momentum Effective Theory (LaMET)

® Light-cone distribution: separate in time direction, universal.

® Quasi-distribution: equal time, P* dependent.
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Lattice Setup

® Volume: 483 x 64 with a = 0.06 fm, generated by HotQCD;

® Seaquark: Ny =2+ 1 Highly Improved Staggered Quark (HISQ) action with
physical quark masses;

® Valence quark: Wilson-Clover action on 1-step hypercubic (HYP) smeared
gauge configurations, valance pion mass m, = 300 MeV;

® Hadron momentum: P, = {1.29,1.72,2.15} GeV;

® Multiple exact and sloppy Dirac operator inversions using All-Mode Averaging
(AMA);

® Boosted Gaussian smearing for quarks to achieve better overlap with boosted
hadrons (Radius ~ 0.59 fm, mg ~ 0.7 mz).
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Momentum Smearing: Pion Electromagnetic Form Factors

5 LO(tw2/3/4)+NLO(tw2/3) — — BSE21
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H. T Ding, et al. 2404.04412

® HotQCD: HISQ + Wilson-clover + HYP, m ; = 140 MeV, a = 0.076 fm, V =
643 x 64;

* Boosted Gaussian smearing helps to reach very large 0% ~ 10 GeV2.
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Quasi-TMDPDF under Coulomb Gauge without Wilson Line

Gauge Invariant (Gl) Coulomb Gauge (CG)

The quasi-TMD matrix elements of the pion under CG are defined as
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CG v.s. GI: Simple Renormalization

The renormalization of the quark correlator is simply multiplicative and
z-independent, take the pion quasi-PDF as an example:

Ip(2TYp(0) = Zy(a) [¢(TY(0)];
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X. Gao, et al. 2306.14960

® HotQCD: HISQ + Wilson-clover + HYP, m = 300 MeV, a = {0.04,0.06} fm,
V = {643 x 64,483 x 64};

® 7(z,a)/h(zg,a) should be independent of a, i.e. no linear div.
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CG v.s. GI: Better Signal

Pion quasi-TMDWF with CG and GI approaches.
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D. Bollweg, et al. 2403.00664

® DWEF: Mobius DW + Iwasaki, physical m , a = 0.0836 fm, V = 643 x 128 x 12;
® CG has much better signal than GI;

® CG has smaller tail at large z, does not need extrapolation.

University of Maryland, College Park
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CS Kernel Extracted from Quasi-TMDWF
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® Quasi-TMDWEF has a good behavior even for large b, ~ 0.85 fm;

® The x-independent CS kernel can be extracted from good plateaus in x.

Pion ol
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CS Kernel Results
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MILC: HISQ + Symanzik, physical m,, a = {0.09,0.12,0.15} fm, V =
{643 x 96,483 x 64,323 x 48};

® Good consistency with the state-of-the-art GI lattice calculation;

® Good consistency with phenomenological results;

® Smaller uncertainties to reach the large separation region.
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Intrinsic soft function

fi(z, by, p, P?) 1 (22P7)?
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The soft function can be extracted from the quasi-TMDWFs (D. Bollweg, et al.
2403.00664) and the light-meson form factor F (Q. A. Zhang, et al. (LPC) PRL 125
(2020)).
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® Good signal-to-noise ratio even for large momentum;

® Fitresults: ¢; = 1.16(13) and ¢, = —0.10(15).
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Bare Quasi-TMDPDF

The preliminary results (100 configurations) of pion quasi-tmdpdf with momentum

P* = 1.8 GeV.
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® Good signal-to-noise ratio even for large b ;

® Small tails at long range, easy to extrapolate.
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Estimated Cost

Task Symbol  Time (sec.)
Extended source/sink creation text 17
MG light-quark inversion sloppy tilnv 17
MG light-quark inversion exact tilnV 26
Contraction for pion 2pt function tgpt 13
Contraction for 3pt function for quasi-TMD l;ré\:m 0.25 x 252

Table 1: Times needed for various parts of the calculations on the 483 x 64,
a = 0.06 fm lattice, with m , = 300 MeV, using 1 node of Polaris at ALCF (4
A100 cards).
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Resource Request

The time of the calculations on a single gauge configuration and one source is

!

— 1 7
t = Nmom X (Ztinv + 2t2pt +4texe + (1,

TMD
+lext + I35 ) % Nsep)

Computaional Resources:
® 105k GPU hours on FNAL

Storage Resources:
® 50 TB disk storage

® 100 TB long-term storage
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Summary

® Pion TMDs are important for understanding the chiral symmetry breaking and
QCD structure, it is also a good benchmark;

® Coulomb gauge method has significant advantages in the lattice calculation of
TMDs, especially in large separation region (b, > 1fm);

® Our methods and technologies have been examed in many previous works, we
are able to calculate the pion TMDs with controllable uncertainties.
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Q. Systematics from using meson form factors in literature?
A. Soft function can be checked by comparing with perturbative results; a
25% error is still meaningful.

Q. Compute the pion quasi-TMD with the standard gauge invariant
definition?
A. Yes, they share the same quark propagators, will do partial computation.

Q. Preliminary results to demonstrate the computational effectiveness?
A. Pion PDF; Pion quasi-TMDWEF & CS kernel; Preliminary 2pt and 3pt
results of Pion TMDPDF.

Q. Estimation of how the noise increases with each unit of momentum?
A. Effective mass and dispersion relation plots.

Fine Lattice






Backup: Estimated Cost 2023

Task Symbol  Time (sec.)
Extended source/sink creation Text 10
MG light-quark inversion sloppy tilnv 26
MG light-quark inversion exact tilnv 50
Contraction for kaon 2pt function tgp " 10
Contraction for 3pt function for FF tggt 4

Table 2: Timings using 16 nodes of the BNL IC cluster (32 K80 cards)

a Fine Lattice



Backup: Gribov Copies - Quasi Pion PDF

® Mainly affect the gauge propagator

® Lattice Gribov noise + measurement distortion
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Figure 1: The ratio of quasi pion PDF from two sets of Gribov copies.




Backup: Gribov Copies - Quark Spatial Propagator
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Figure 2: The error of effective mass at z = 10 a as a function of number of configurations N.

The grey band shows the expected error that decreases as 1/VN.




Backup: GI Quasi-TMDPDF
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