
Wigner-Eckart Theorem
 
Vector and Tensor operator
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which is similar to the transform
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Selection rule
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in which  and  are quantum numbers apart from angular momentum.𝛼 𝛼'



 
 
 
Wigner-Eckart Theorem
 

Because  has the same transformation as , we can use CG coefficients to combine two spherical T k
q
( ) j,m

tensor operators to a new spherical tensor operator

A +B T
j
m
( 1)

1

j
m
( 2)

2
→

j
m
( )

 

With the definition , we can rewrite the transformation of  to getD R =j
m'm
( ) ( ) j,m' U R( ) j,m T k

q
( )

U ,𝜃 T U ,𝜃 = T  (n̂ ) k
q
( ) -1(n̂ ) ∑

q'

k
q'
( ) k, q' U ,𝜃(n̂ ) k, q

take infinitesimal rotation , we got𝜃 = 𝜖

· ,T = T  J n̂ k
q
( ) ∑

q'

k
q'
( ) k, q' ·J n̂ k, q

replace  by , we got·J n̂ J±

J ,T = T  = ℏ T±
k
q
( ) ∑

q'

k
q'
( ) k, q' J± k, q k k+ 1 - q q± 1( ) ( ) k

q±1
( )

replace  by , we got·J n̂ Jz

J ,T = T  = ℏq Tz
k
q
( ) ∑

q'

k
q'
( ) k, q' Jz k, q k

q
( )

 
Then we can prove the Wigner-Eckart theorem
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To prove it, we just need to prove that the matrix elements  satisfy the same 𝛼', j,m T
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recursion relation as CG coefficients
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Some inferences
 
For a scalar operator , we haveS
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