3D Imaging of the Pion on a Fine Lattice

Phys. Rev. D 112 (2025) 2504.04625

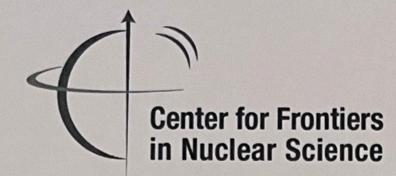
And on going projects ...

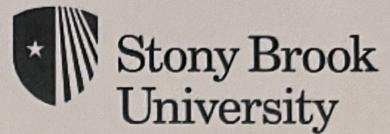
Jinchen He

In Collaboration with D. Bollweg, X. Gao, S. Mukherjee and Y. Zhao

CFNS Seminar

2025/10/15





June 14, 2024

We are pleased to provide this certificate of participation for:

Jinchen He University of Maryland, College Park

who attended the

2024 CFNS Summer School on the Physics of the Electron-Ion Collider,

June 3 − 14, 2024 at Stony Brook University, USA.

Prof. Abhay Deshpande Director, Center for Frontiers in Nuclear Science, Department of Physics & Astronomy, Stony Brook University

Alexei Prokudin Fredrick Olness

Prof. Alexei Prokudin Chair, Organizing Committee & Science Division, Penn State University Berks

Prof. Fred Olness CTEQ Collaboration & SMU Physics Department Dallas, Texas

Introduction **♦** Parton Physics

- **♦** 3D Imaging & Transverse Momentum Dependent Distributions (TMDs)
- **♦** Phenomenological Extraction of TMDs
- **♦** Lattice QCD Calculations of TMDs

Methodology

- **♦** Large Momentum Effective Theory (LaMET)
- **♦** Coulomb Gauge (CG) Method

Numerical Results

- **♦** Collins-Soper kernel (CS kernel)
- **♦** Intrinsic soft function
- **→** TMD Wave Function & TMDPDF

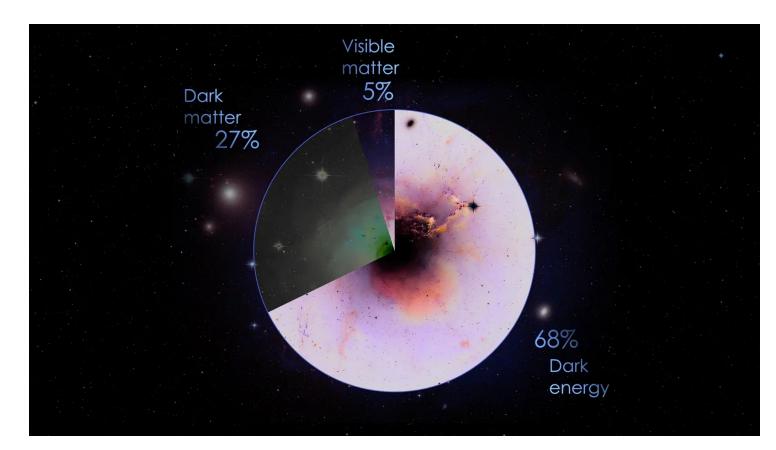
Summary

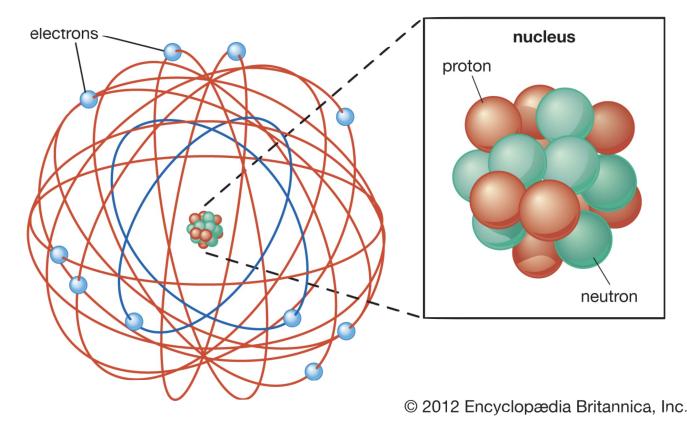
Contents

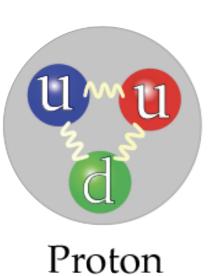
Introduction

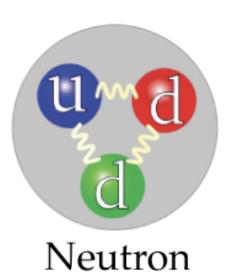
Visible Universe

- Only 5% of the universe is visible. Spergel, David N. "The dark side of cosmology: Dark matter and dark energy." Science 347.6226 (2015): 1100-1102.
- The visible universe is made up of protons and neutrons, the inner structure of hadrons are sophisticated if we step closer.





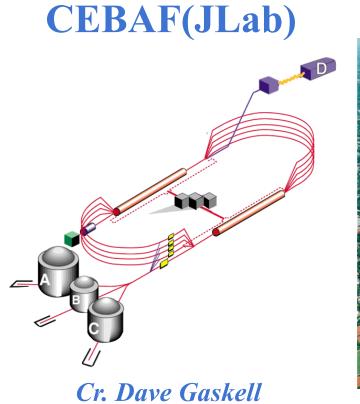


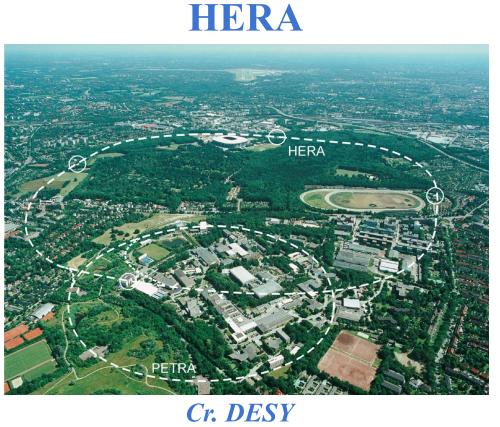


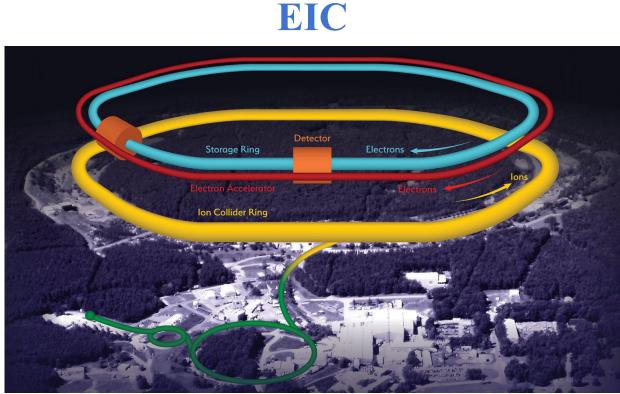
Cr. NASA's Goddard Space Flight Center

Many experiments have been designed to probe the internal structure of hadrons.

P.S. The list of experiments here is not complete.







Cr. BNL

Parton Physics

- Our knowledge on hadron is still limited:
 - o Spin, mass ...
 - O How to describe a relativistic moving strong-coupled bound state?
- O The language from Feynman: Parton Model in the infinite momentum frame

R. P. Feynman, Conf. Proc. C 690905 (1969)

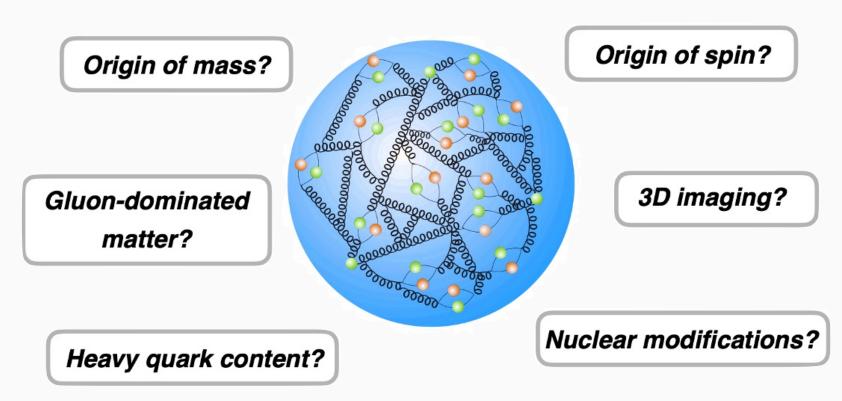
O Quarks and gluons (partons) are "frozen" in the transverse plane;

Cr. Dave Gaskell

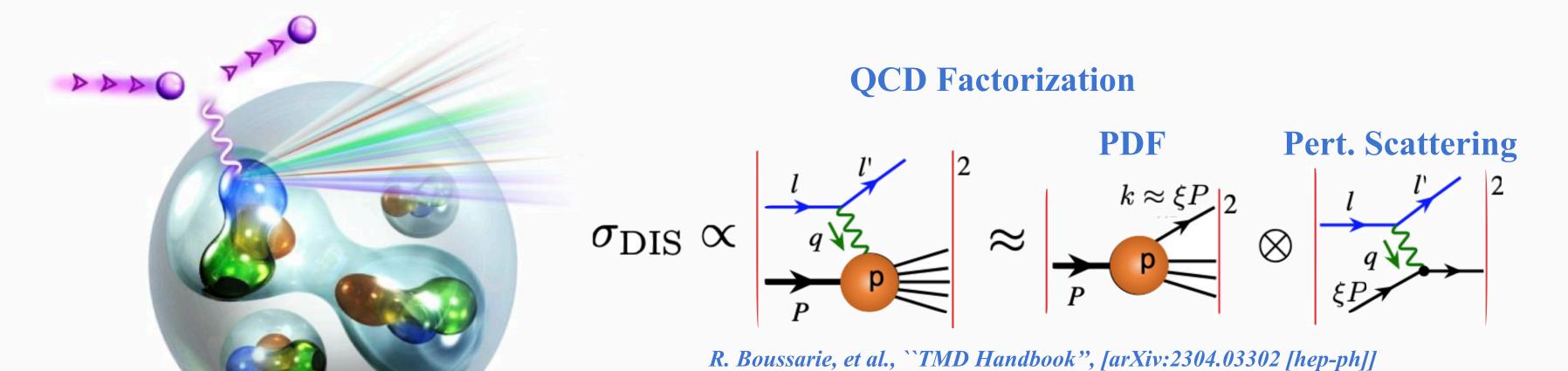
O During a high-energy collision, the struck parton appears like a free particle.

The many faces of the proton

QCD bound state of quarks and gluons



Cr. Juan Rojo

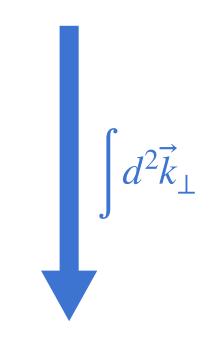


3D Imaging of Hadron

x is the momentum fraction in the longitudinal (hadron momentum) direction.

Wigner Distribution / GTMD

$$W(x, \vec{r}_{\perp}, \vec{k}_{\perp})$$



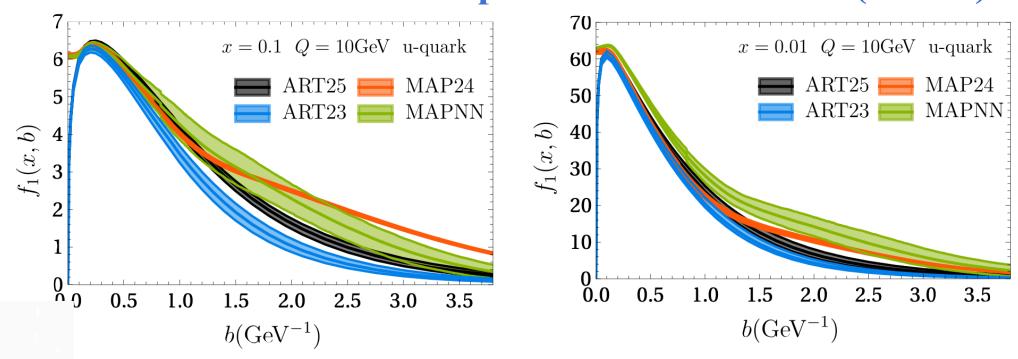
Generalized Parton Distributions (GPDs)

The isovector GPD H_{u-d} at -t = 0.69 GeV² tuned with DA terms $0.1 \\ 0.2 \\ 0.3 \\ 0.4$

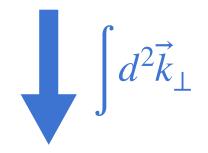
Y. Guo, et al., JHEP 09 (2022)

Latest results of GUMP 1.0 in 2509.08037 [hep-ph]

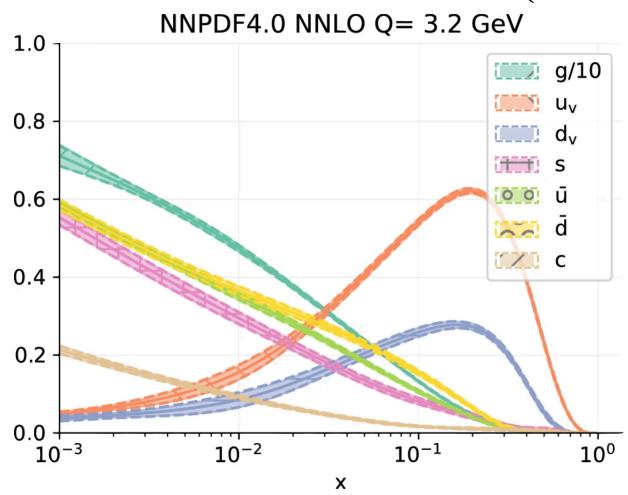
Transverse-Momentum-Dependent distributions (TMDs)



V. Moos, et al., 2503.11201 (2025)



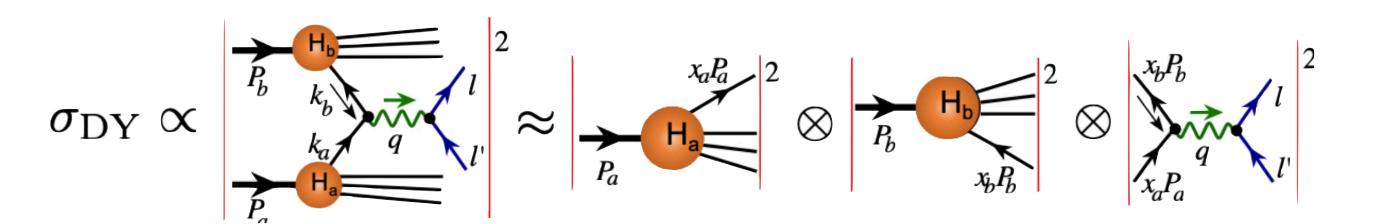
Parton Distribution Functions (PDFs)



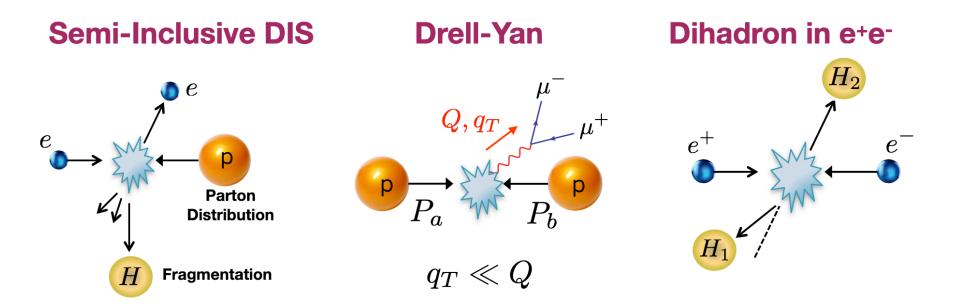
R. D. Ball, et al. [NNPDF], Eur. Phys. J. C 82 (2022)

TMDs in Experiments

- O TMDPDFs: the distribution densities of finding a parton carrying a longitudinal momentum fraction x and transverse momentum k_{\perp} in a hadron;
- o TMD processes are important processes in high energy collisions, like Drell-Yan process on LHC and Semi-Inclusive DIS on EIC;



$$\frac{d\sigma_{H_a + H_b \to l\bar{l} + X}}{dQ^2 dY d^2 \vec{q}_T} = \frac{4\pi\alpha^2}{3N_c Q^2 S} \sum_{i} e_i^2 \int d^2 \vec{k}_{a\perp} d^2 \vec{k}_{b\perp} \delta^{(2)} \left(\vec{q}_T - \vec{k}_{a\perp} - \vec{k}_{b\perp} \right)
\times f_{1(i/H_a)} \left(x_a, \vec{k}_{a\perp} \right) \times f_{1(\bar{i}/H_b)} \left(x_b, \vec{k}_{b\perp} \right)$$



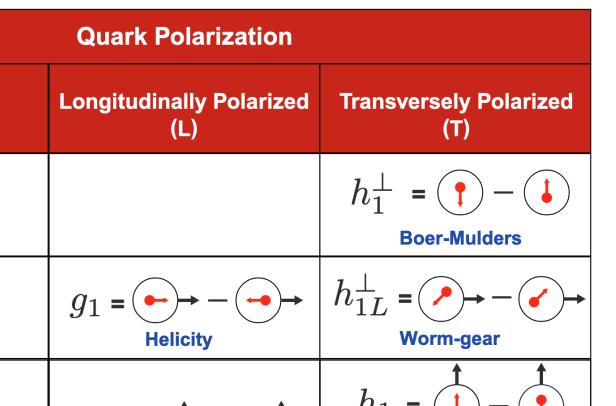
Leading Quark TMDPDFs (

Un-Polarized

Sivers

 f_1 = (ullet)

Nucleon Polarization



R. Boussarie, et al., 2304.03302 (2023)

Worm-gear

 h_{1T}^{\perp} =

Pretzelosity

Phenomenological Extraction of TMDs

- O Significant progress has been made in the phenomenological parameterizations of TMDs
- Some of groups will incorporate neural network;
- Some of groups will include lattice data;

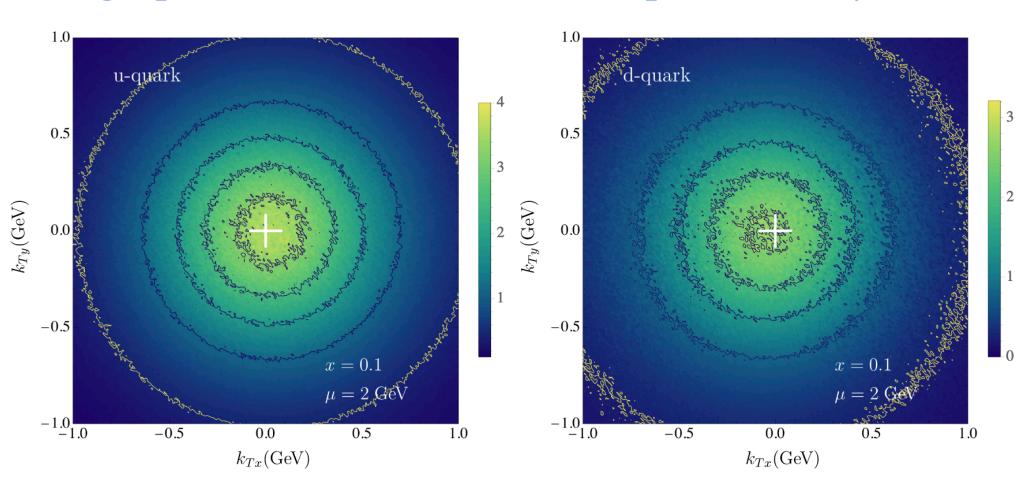
o Collins-Soper kernel (CS kernel): rapidity evolution kernel of TMDs

A. Bacchetta, et al. (MAP) JHEP 08 (2024); V. Moos, et al., 2503.11201 ...

- o Nucleon TMDs
 - O Unpolarized M. Bury, et al., JHEP 10 (2022); A. Bacchetta, et al., JHEP 10 (2022); V. Moos, et al., JHEP 05 (2024) ...
 - O **Sivers** M. Bury, et al., PRL 126 (2021); I. P. Fernando, et al., Phys.Rev.D 108 (2023) ...
 - O Boer-Mulders Z. Lu, et al., Phys. Rev. D 81 (2010); X. Liu, et al., Eur. Phys. J. C 81 (2021) ...
- > Pion TMDs: much less is known about the TMDs of the pion
 - O Unpolarized

 A. Vladimirov, JHEP 10 (2019); M. Cerutti, et al. (MAP), Phys.Rev.D 107 (2023);
 P. C. Barry, et al. (JAM) Phys.Rev.D 108 (2023)

Tomographic scan of the nucleon via quark density function



M. Bury, et al., JHEP 05 (2021)

As the lightest pseudo Nambu-Goldstone boson, the 3D structure of pion will help us understand the strong interaction, such as the origin of chiral-symmetry breaking.

Lattice QCD

Path integral formalism

$$Z = \int \mathcal{D}A \, \mathcal{D}\psi \, \mathcal{D}\bar{\psi} \, e^{iS_{\text{QCD}}[A,\psi,\bar{\psi}]}$$

Wilson link

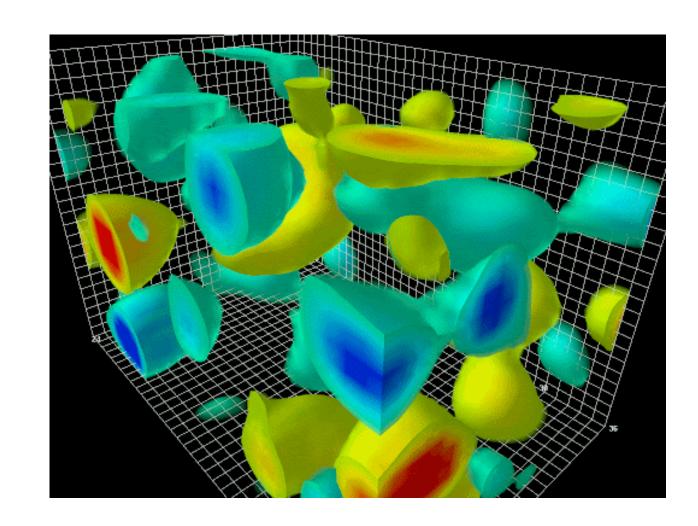
$$Z = \int \mathcal{D}A \, \mathcal{D}\psi \, \mathcal{D}\bar{\psi} \, e^{iS_{\mathrm{QCD}}[A,\psi,\bar{\psi}]} \qquad \underbrace{ \begin{array}{c} U_{\mu}(x) = e^{igaA^{\mu}(x)} \\ \\ t \rightarrow -it_{\mathrm{E}} \end{array} } \\ Z_{\mathrm{E}} = \int \mathcal{D}U e^{-S_{\mathrm{E}}^{g}[U]} \int \mathcal{D}\psi \mathcal{D}\bar{\psi} e^{-\bar{\psi}M[U]\psi} = \int \mathcal{D}U \left[e^{-S_{\mathrm{E}}^{g}[U]} \det M[U] \right] \\ \underbrace{ \begin{array}{c} U_{\mu}(x) = e^{igaA^{\mu}(x)} \\ \\ t \rightarrow -it_{\mathrm{E}} \end{array} } \\ \end{array}$$

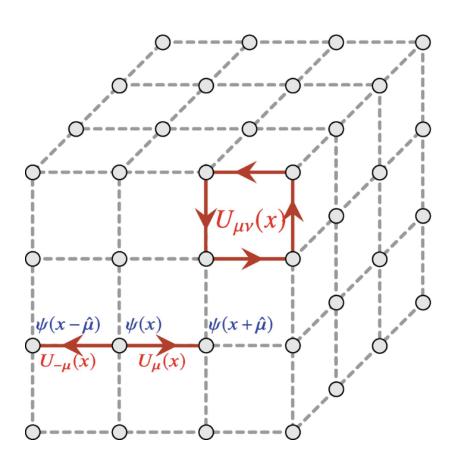
Wick rotation

Sampling probability for configuration U

Monte Carlo sampling

$$\langle \hat{O} \rangle = \frac{1}{Z_{\rm E}} \int \mathcal{D}U \mathcal{D}\psi \mathcal{D}\bar{\psi} \hat{O} e^{-S_{\rm E}^{\rm QCD}[A,\psi,\bar{\psi}]} = \frac{1}{N} \sum_{i=1}^{N} O[U^{(i)}]$$





Lattice QCD Calculation of TMDs

- As a first-principles non-perturbative method, Lattice QCD provides independent predictions of TMDs.
 - O Mellin Moments B. Yoon, et al., 1601.05717; B. Yoon, et al., Phys. Rev. D 96 (2017)...
 - Large Momentum Effective Theory (LaMET)
 - O CS kernel

 M. H. Chu, et al. (LPC), JHEP 08 (2023); A. Avkhadiev et al., PRL 132 (2024); D. Bollweg, et al., Phys. Lett. B 852 (2024) ...
 - O Intrinsic soft function

 Q. A. Zhang, et al. (LPC), PRL 125 (2020); M. H. Chu, et al. (LPC),
 JHEP 08 (2023)
 - o Unpolarized JH, et al. (LPC), Phys.Rev.D 109 (2024)
 - O Helicity D. Bollweg, X. Gao, S. Mukherjee and Y. Zhao, 2505.18430
 - O Boer-Mulders L. Walter, et al. (LPC), 2412.19988; L. Ma, et al. (LPC), 2502.11807



Methodology

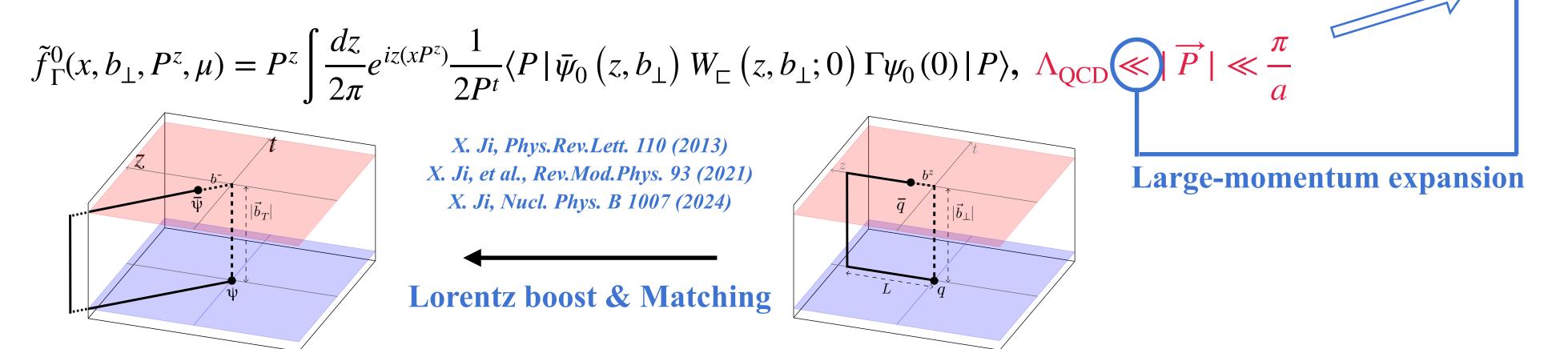
Large-Momentum Effective Theory (LaMET)

o TMDPDF is defined from a light-cone correlator in a hadron, which is Lorentz invariant.

$$f(x, b_{\perp}, \ldots) = \int_{-\infty}^{\infty} \frac{db^{-}}{2\pi} e^{-ib^{-}(xP^{+})} \left\langle P \left| \bar{\psi} \left(b^{\mu} \right) W_{\square} \left(b^{\mu}, 0 \right) \frac{\gamma^{+}}{2} \psi \left(0 \right) \right| P \right\rangle \longleftrightarrow \left\langle \left| \overrightarrow{P} \right| = \infty \left| O(t = 0) \right| \left| \overrightarrow{P} \right| = \infty \right\rangle$$

O Define a quasi distribution with large-momentum states and time-independent operators.

Different orders of limit, but pert.



Light-cone distribution:

Critical point with infinite correlation length Cannot be directly calculated on the lattice

Quasi distribution:

Directly calculable on the lattice

 $H_f(x, P^z; \mu) = |C_{\text{TMD}}(xP^z; \mu)|^2$ is the TMD hard kernel for matching.

• LaMET enables us to obtain the precision-controlled x-distribution of TMDs in $x \in [x_{\min}, x_{\max}]$.

$$\sqrt{S_{I}\left(b_{\perp};\mu\right)} \cdot \tilde{f}_{\Gamma}\left(x,b_{\perp},P^{z};\mu\right) = f\left(x,b_{\perp};\mu,\zeta\right) H_{f}\left(x,P^{z};\mu\right) \exp\left[\frac{1}{2}\ln\frac{(2xP^{z})^{2}}{\zeta}\gamma^{\overline{\text{MS}}}\left(b_{\perp};\mu\right)\right] + \text{Power corrections}$$

Soft Function

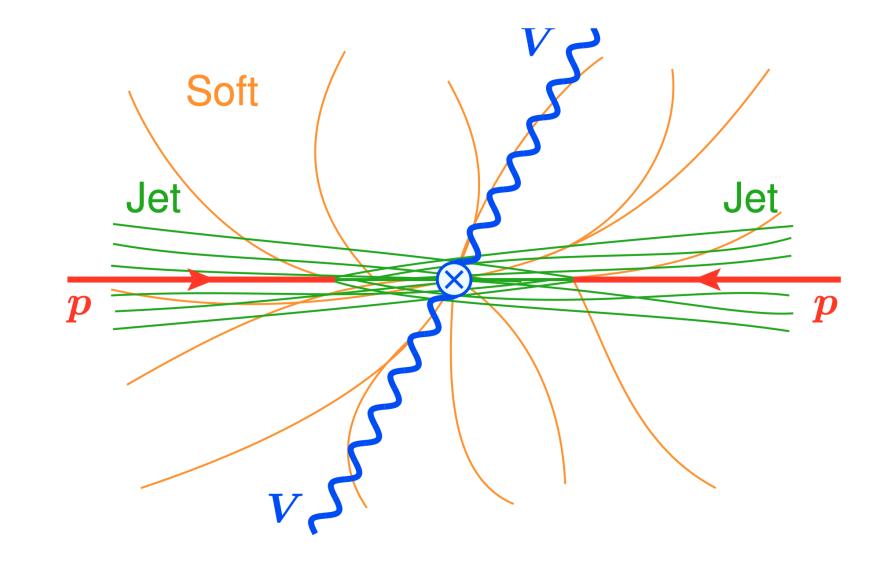
$$\sqrt{S_{I}(b_{\perp};\mu)} \cdot \tilde{f}_{\Gamma}(x,b_{\perp},P^{z};\mu) = f(x,b_{\perp};\mu,\zeta) H_{f}(x,P^{z};\mu) \exp \left[\frac{1}{2} \ln \frac{(2xP^{z})^{2}}{\zeta} \gamma^{\overline{\text{MS}}}(b_{\perp};\mu)\right] + \text{Power corrections}$$

After regularization, the rapidity evolution is controlled by Collins-Soper scale: $\zeta = 2(xP^+)^2e^{-2y_n}$

- The soft gluon radiation will lead to the existence of soft functions;
- O Due to the gluon radiation in the collinear mode, the soft function contains the well-known rapidity divergence; $\int_{q_T}^{Q} \frac{dk}{k} = \lim_{\tau \to 0} \left[\int_{0}^{Q} \frac{dk}{k} R_c(k,\tau) + \int_{q_T}^{\infty} \frac{dk}{k} R_s(k,\tau) \right] = \ln \frac{Q}{q_T}$
- o The soft function can be separated into two parts:
 - o Rapidity evolution kernel: CS kernel $\gamma^{\overline{\rm MS}}$ $(b_{\perp}; \mu)$
 - o Rapidity independent part: intrinsic soft function $S_I(b_{\perp}; \mu)$
- CS kernel can be extracted from the rapidity evolution of TMDs

$$\gamma^{\overline{\rm MS}}(b_{\perp},P_1,P_2;\mu) = \frac{1}{\ln\big(P_2/P_1\big)} \ln\frac{H_f\big(x,\bar{x},P_1;\mu\big)\tilde{f}_{\gamma^t}\big(x,b_{\perp},P_2;\mu\big)}{H_f\big(x,\bar{x},P_2;\mu\big)\tilde{f}_{\gamma^t}\big(x,b_{\perp},P_1;\mu\big)}$$

$$H_f\big(x,P^z;\mu\big) = |C_{\rm TMD}(xP^z;\mu)|^2 \text{ is the TMD hard kernel for matching.}$$



M. Ebert, PhD Thesis (2017)

Soft Function

- The intrinsic soft function cannot be directly calculated on lattice because of two light-like Wilson lines in different directions
 - o Fortunately, it can be extracted from the meson form factor X. Ji, et al., Nucl. Phys. B 955 (2020)

$$F\left(b_{\perp}, P_{1}, P_{2}, \Gamma, \Gamma'\right) \equiv -4N_{c} \frac{\left\langle P_{2} \middle| \bar{q}\left(b_{\perp}\right) \Gamma q\left(b_{\perp}\right) \bar{q}\left(0\right) \Gamma' q\left(0\right) \middle| P_{1} \right\rangle}{f_{\pi}^{2}(P_{1} \cdot P_{2})}$$

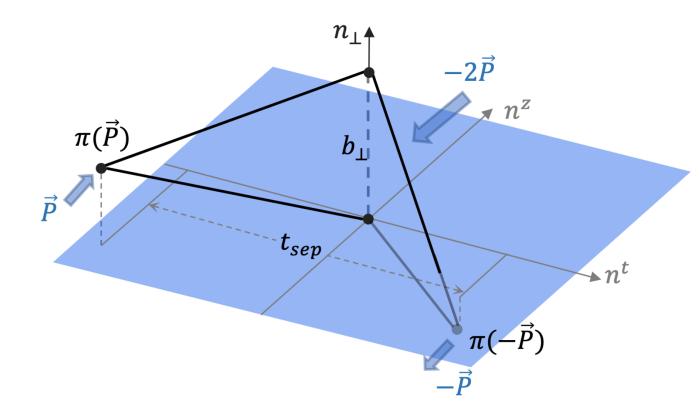
• The form factor satisfies the factorization formula

$$\begin{split} F(b_\perp,P^{\scriptscriptstyle Z}) &= \int \! dx_1 dx_2 \,\, H_F(x_1,x_2,P^{\scriptscriptstyle Z};\mu) \,\, \phi^\dagger(x_1,b_\perp,y_n;\mu,\zeta_1,\bar\zeta_1) \,\, \phi(x_2,b_\perp,-y_n;\mu,\zeta_2,\bar\zeta_2) \\ \\ \phi(x,b_\perp,\ldots) &= \int_{-\infty}^\infty \frac{db^-}{2\pi} e^{-ib^-(xP^+)} \left\langle 0 \left| \bar\psi\left(b^\mu\right) W_{\scriptscriptstyle \square}\left(b^\mu,0\right) \gamma^+ \gamma^5 \psi\left(0\right) \right| P \right\rangle \text{ is TMD wave function.} \\ \\ H_F(x_1,x_2,P^z;\mu) &= C_{\rm Sud}(x_1,x_2,P^z;\mu) \cdot C_{\rm Sud}(\bar x_1,\bar x_2,P^z;\mu), \text{ where $C_{\rm Sud}$ is the Sudakov kernel.} \end{split}$$

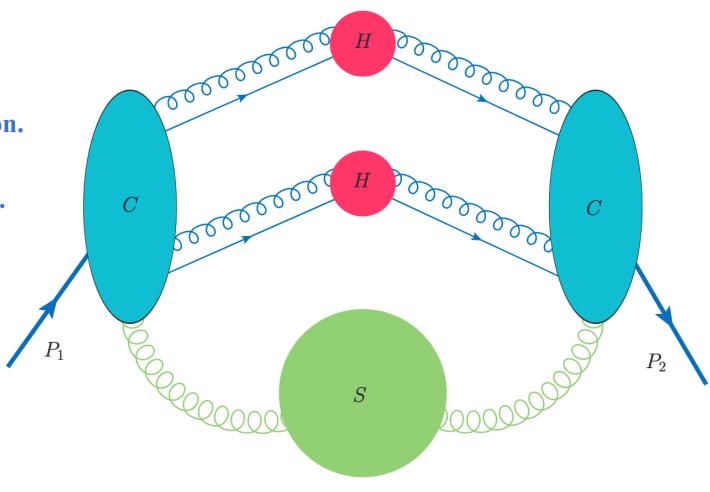
O Therefore, the intrinsic soft function can be extracted via

$$S_{I}(b_{\perp};\mu) = \frac{F(b_{\perp},P^{z})}{\int dx_{1}dx_{2}H_{F}(x_{1},x_{2},P^{z};\mu)\tilde{\Phi}^{\dagger}(x_{1})\tilde{\Phi}(x_{2})} \text{ with } \tilde{\Phi}(x) \equiv \frac{\tilde{\phi}_{\Gamma}\left(x,b_{\perp},P^{z};\mu\right)}{H_{\phi}\left(x,\bar{x},P^{z};\mu\right)}$$

 $ilde{\phi}_{\Gamma}\left(x,b_{\perp},P^{z};\mu
ight)$ is quasi-TMD wave function.



Q. A. Zhang, et al., Phys. Rev. Lett. 125 (2020)

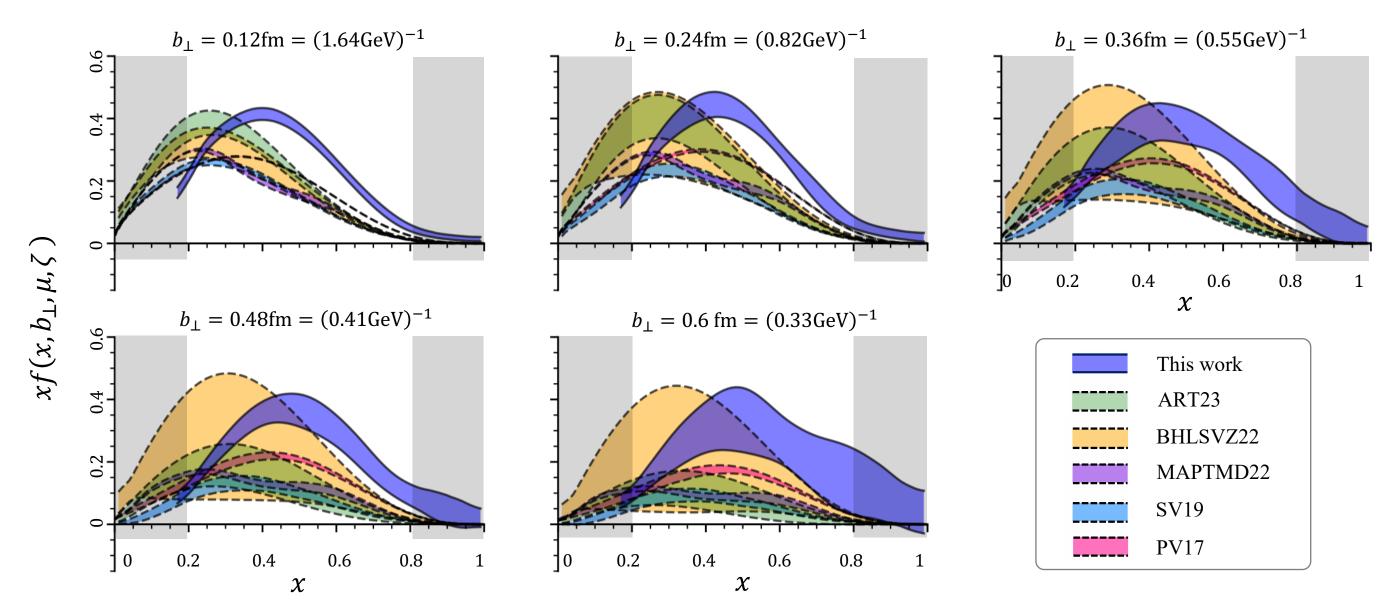


Z. F. Deng, et al., JHEP 09 (2022)

Unpolarized TMD via LaMET

o In recent years, a lot of improvements of renormalization and matching has been developed in LaMET;

Unpolarized nucleon TMDPDF



JH, et al. (LPC), Phys.Rev.D 109 (2024)

Y. Su, et al., Nucl. Phys. B 991 (2023);R. Zhang, et al., Phys. Lett. B 844 (2023);X. Ji, et al., 2410.12910 [hep-ph]

- \bullet a = 0.12 fm
- $P_{\text{max}}^z = 2.58 \text{ GeV}$
- **Physical limit of** m_{π}^{val}
- **♦** N3LL matching
- **♦ NLO soft function**

- Existing lattice calculations of the nucleon TMD still suffer from some systematics:
 - o Discretization effects;
 - Excited-state contamination;
 - Hadron momentum is not large enough ...
- o Due to the bad signal-to-noise ratio (SNR), it is hard to probe the large b_{\perp} region.

Coulomb Gauge Method

Define a quasi distribution in CG without Wilson line:

$$\tilde{f}_{\text{CG}}^{0}(x, b_{\perp}, P^{z}, \mu) = P^{z} \int \frac{dz}{2\pi} e^{iz(xP^{z})} \frac{1}{2P^{t}} \langle P | \bar{\psi}_{0} (z, b_{\perp}) \Gamma \psi_{0} (0) \Big|_{\overrightarrow{\nabla} \cdot \overrightarrow{A} = 0} | P \rangle$$

Why choose CG?

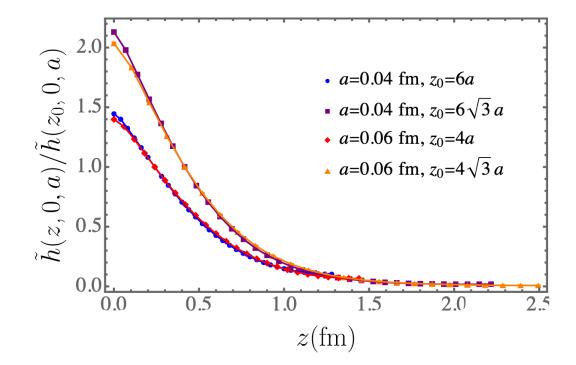
 $\overrightarrow{\nabla} \cdot \overrightarrow{A} = 0$ becomes $A^+ = 0$ in the infinite boost, so the quasi distribution in CG belongs to the universality class in LaMET;

$$\psi_C(x) = e^{-ie\frac{1}{\nabla^2}\overrightarrow{\nabla}\cdot\overrightarrow{A}}\psi_0(x) \xrightarrow{P^z \to \infty} e^{-ie\frac{1}{(\nabla^+)^2}\nabla^+A^+}\psi_0(x) = e^{-ie\frac{1}{\nabla^+\pm 0}A^+}\psi_0(x) = e^{-ie\int_{\pm \infty}^{x^-} dy^-A^+(y^-,x_\perp)}\psi_0(x)$$

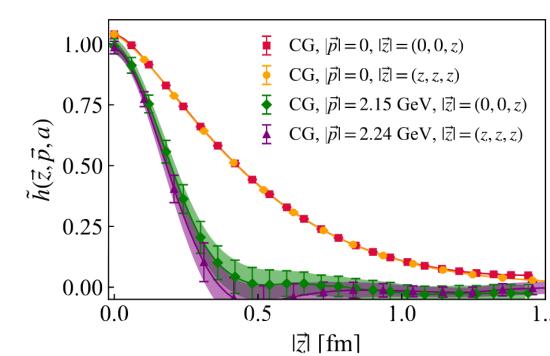
- No linear divergence from the Wilson link, improving the SNR significantly;
- Simplified renormalization $\bar{\psi}_0(z,b_\perp)\Gamma\psi_0(0)=Z_\psi(a)\left[\bar{\psi}(z,b_\perp)\Gamma\psi(0)\right];$
- Larger off-axis momenta (3D rotational symmetry).

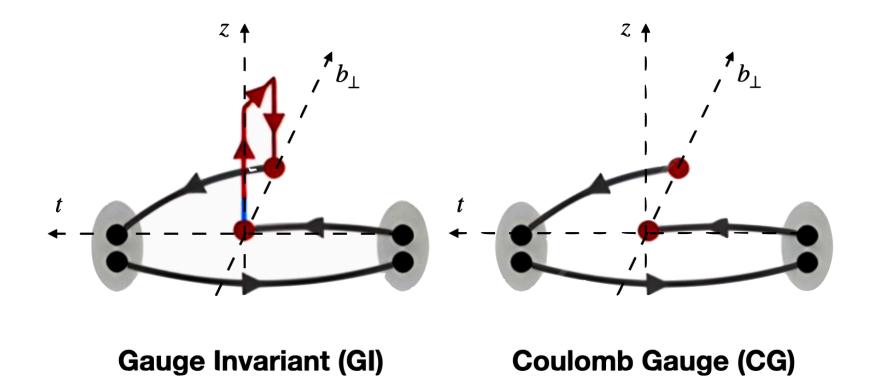
$\tilde{h}_{\gamma^{t}}(z,b_{\perp},P^{z};\mu) = \frac{\tilde{h}_{\gamma^{t}}^{0}(z,b_{\perp},P^{z};a)}{\tilde{\varphi}_{\gamma^{t}\gamma^{5}}^{0}(z=0,b_{\perp},P^{z}=0;a)}$

No linear divergence

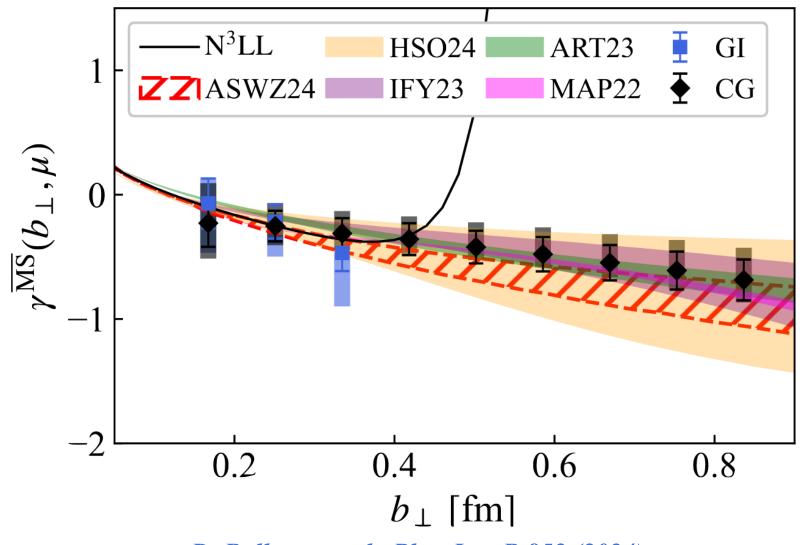


3D rotational symmetry





Collins-Soper kernel in CG v.s. GI



D. Bollweg, et al., Phys.Lett.B 852 (2024)

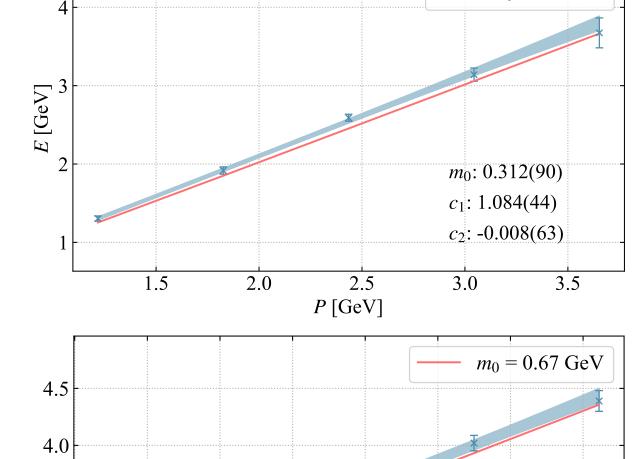
Numerical Results

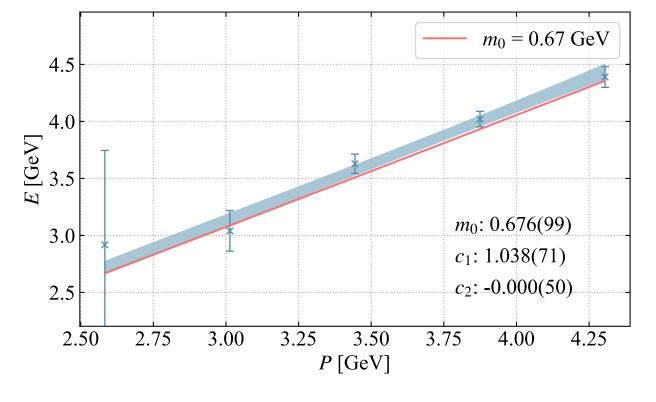
Lattice Setup

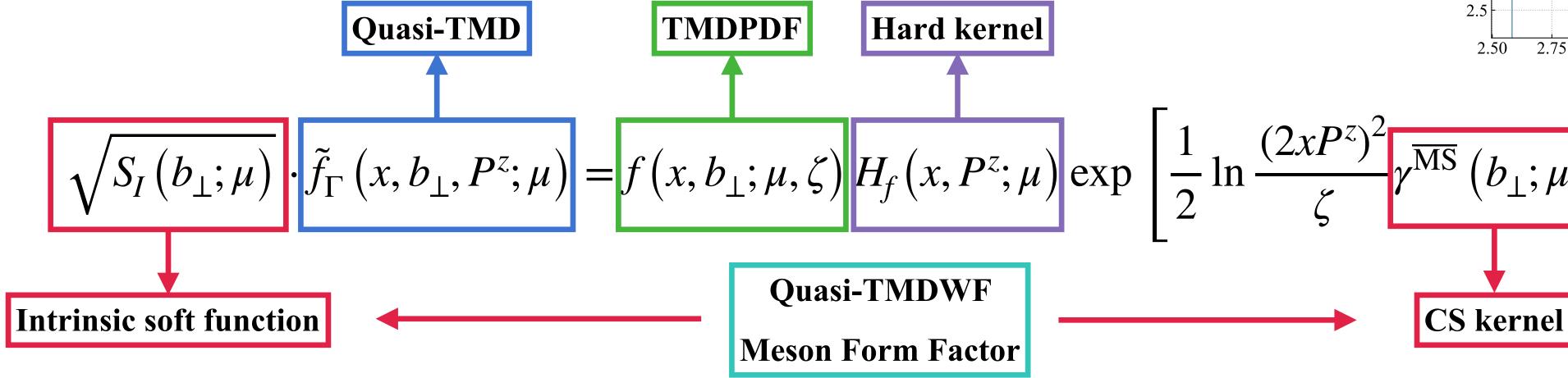
• 2+1 flavor HISQ ensemble by HotQCD with volume $L_s \times L_t = 48^3 \times 64$;

Dispersion relation: $E^2 = m_0^2 + c_1 P^2 + c_2 a^2 P^4$

- o Lattice spacing is a = 0.06 fm;
- o Pion mass of sea quark: $m_{\pi}^{\text{sea}} = 160 \text{ MeV};$
- o Pion mass of valence quark for quasi-TMD: $m_{\pi}^{\text{val}} = 300 \text{ MeV}$;
- o Off-axis ($\vec{n} = (1,1,0)$) hadron momenta for quasi-TMD: 1.83 GeV, 2.43 GeV and 3.04 GeV;
- O Pion mass of valence quark for qTMDWF and meson form factor: $m_{\pi}^{\text{val}} = 670 \text{ MeV}$;
- On-axis hadron momenta for qTMDWF: 3.44 GeV, 3.87 GeV and 4.30 GeV;
- On-axis hadron momenta for meson form factor: 2.58 GeV.





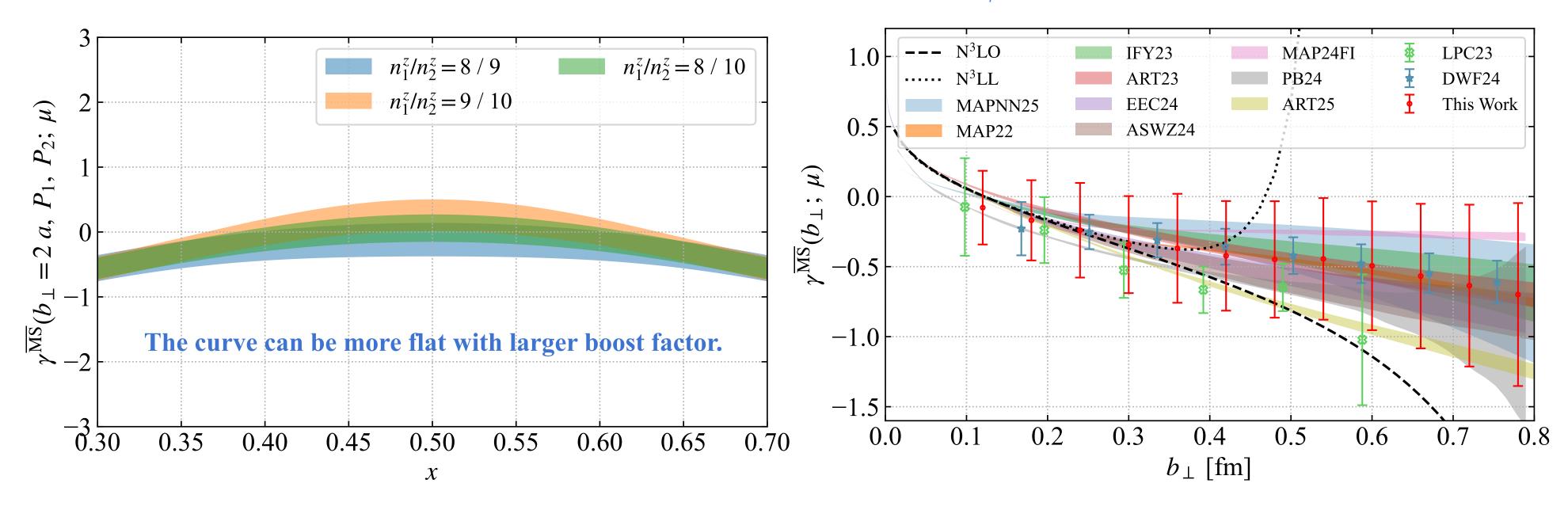


10

Collins-Soper Kernel

$$\gamma^{\overline{\mathrm{MS}}}(b_{\perp}, P_1, P_2; \mu) = \frac{1}{\ln\left(P_2/P_1\right)} \ln\frac{H_{\phi}\left(x, \bar{x}, P_1; \mu\right) \tilde{\phi}_{\gamma^z \gamma^5}\left(x, b_{\perp}, P_2; \mu\right)}{H_{\phi}\left(x, \bar{x}, P_2; \mu\right) \tilde{\phi}_{\gamma^z \gamma^5}\left(x, b_{\perp}, P_1; \mu\right)}$$

 $H_{\phi}(x,\bar{x},P^z;\mu) = C_{\text{TMD}}(xP^z;\mu) \cdot C_{\text{TMD}}(\bar{x}P^z;\mu)$ is the TMD hard kernel for matching.



- o DWF24 is another lattice calculation using the CG method on chirally symmetric domain-wall fermion configurations;
- o There is a notable tension among recent results in phenomenology (MAP24FI & ART25);
- O Both remain consistent with this work due to the large uncertainty;
- The large uncertainty is mainly caused by the small Lorentz boost factor at such a heavy pion mass ($m_{\pi}^{\text{val}} = 670 \text{ MeV}$);

Pion Form Factor

The form factor is defined as

$$F\left(b_{\perp}, P^{z}, \Gamma\right) \equiv -4N_{c} \frac{\left\langle -P^{z} \middle| \bar{q}\left(b_{\perp}\right) \Gamma q\left(b_{\perp}\right) \bar{q}(0) \Gamma q(0) \middle| P^{z} \right\rangle}{f_{\pi}^{2}\left((P^{t})^{2} + (P^{z})^{2}\right)}$$

We choose $\Gamma \in \{\gamma^{\perp}, \gamma^{\perp} \gamma^5\}$ to get leading-twist contribution, then take the Fierz rearrangement.

$$F(b_{\perp},P^z) = \frac{1}{4} \left[F(b_{\perp},P^z,\Gamma=\gamma^x\gamma^5) + F(b_{\perp},P^z,\Gamma=\gamma^y\gamma^5) + F(b_{\perp},P^z,\Gamma=\gamma^x) + F(b_{\perp},P^z,\Gamma=\gamma^y) \right]$$

It can be extracted from the ratio

$$R_{F}\left(b_{\perp}, P^{z}, \Gamma\right) \equiv -4N_{c} \frac{\left\langle -P^{z} \right| \bar{q}\left(b_{\perp}\right) \Gamma q\left(b_{\perp}\right) \bar{q}(0) \Gamma q(0) \left| P^{z} \right\rangle}{\left\langle 0 \right| \bar{q}(0) \gamma^{\mu} \gamma^{5} q(0) \left| P^{z} \right\rangle \left\langle -P^{z} \right| \bar{q}(0) \gamma_{\mu} \gamma^{5} q(0) \left| 0 \right\rangle}$$

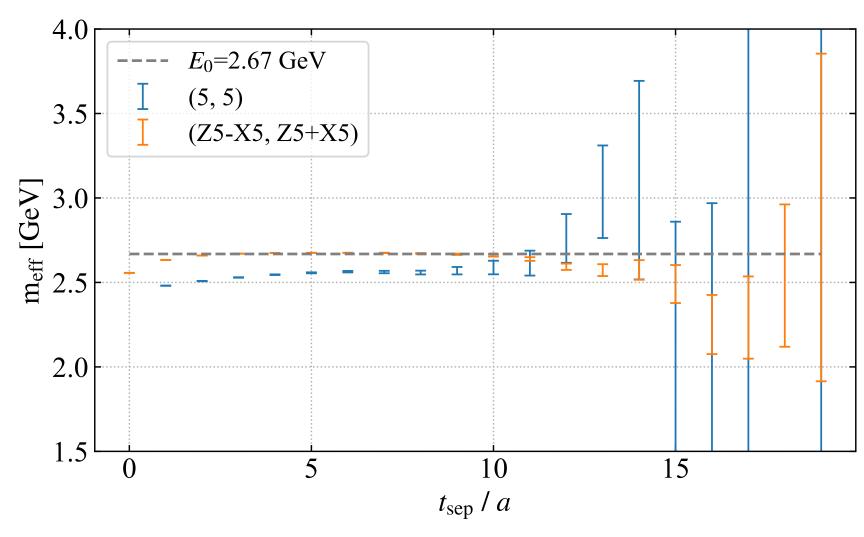
The ratio in terms of correlators on lattice

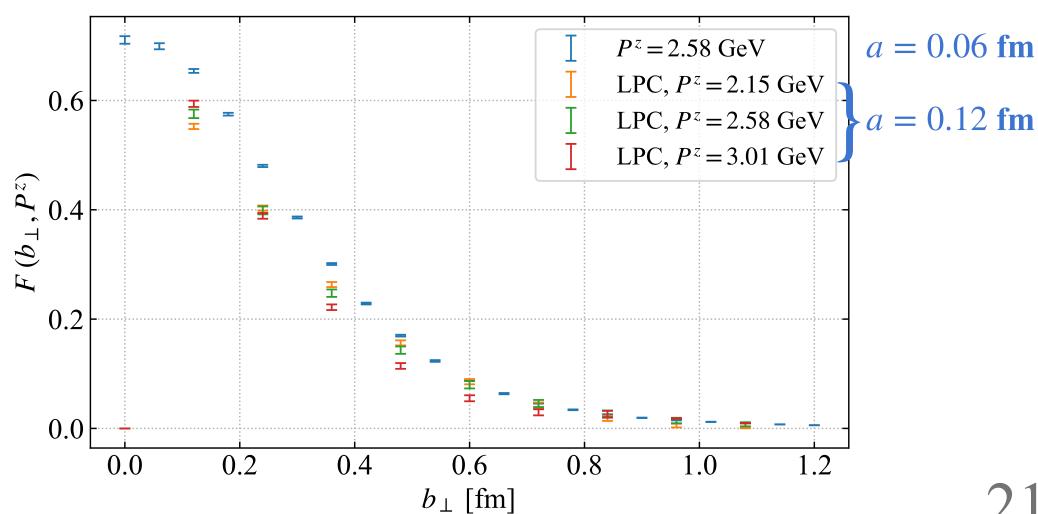
$$R_F\left(t_{\text{sep}}, \tau\right) = \frac{-4N_c}{1 + (P^t/P^z)^2} \frac{C_F\left(t_{\text{sep}}, \tau\right)}{\left|C_{\text{2pt}}\left(t_{\text{sep}}/2\right)\right|^2}$$

The 2pt is calculated using the new interpolating operator.

Kinematically-enhanced interpolating operator

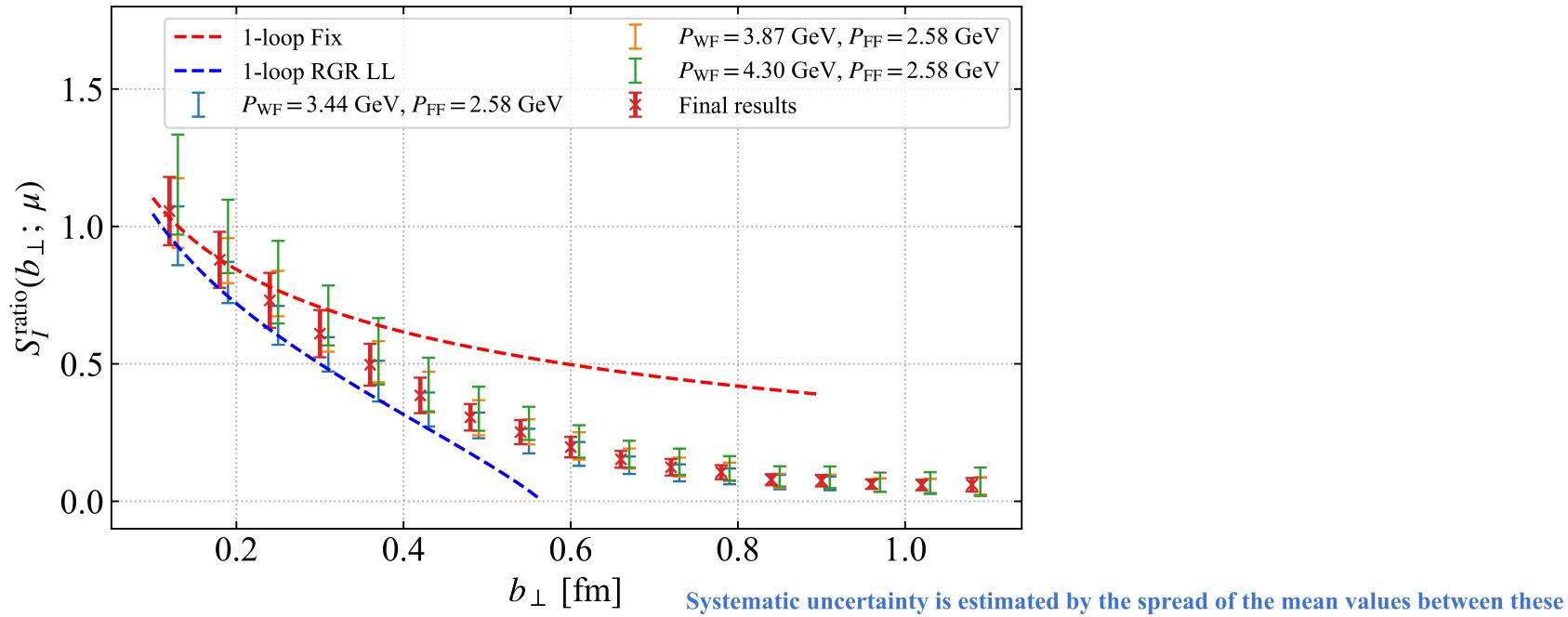
R. Zhang, et al., Phys. Rev. D 112 (2025)





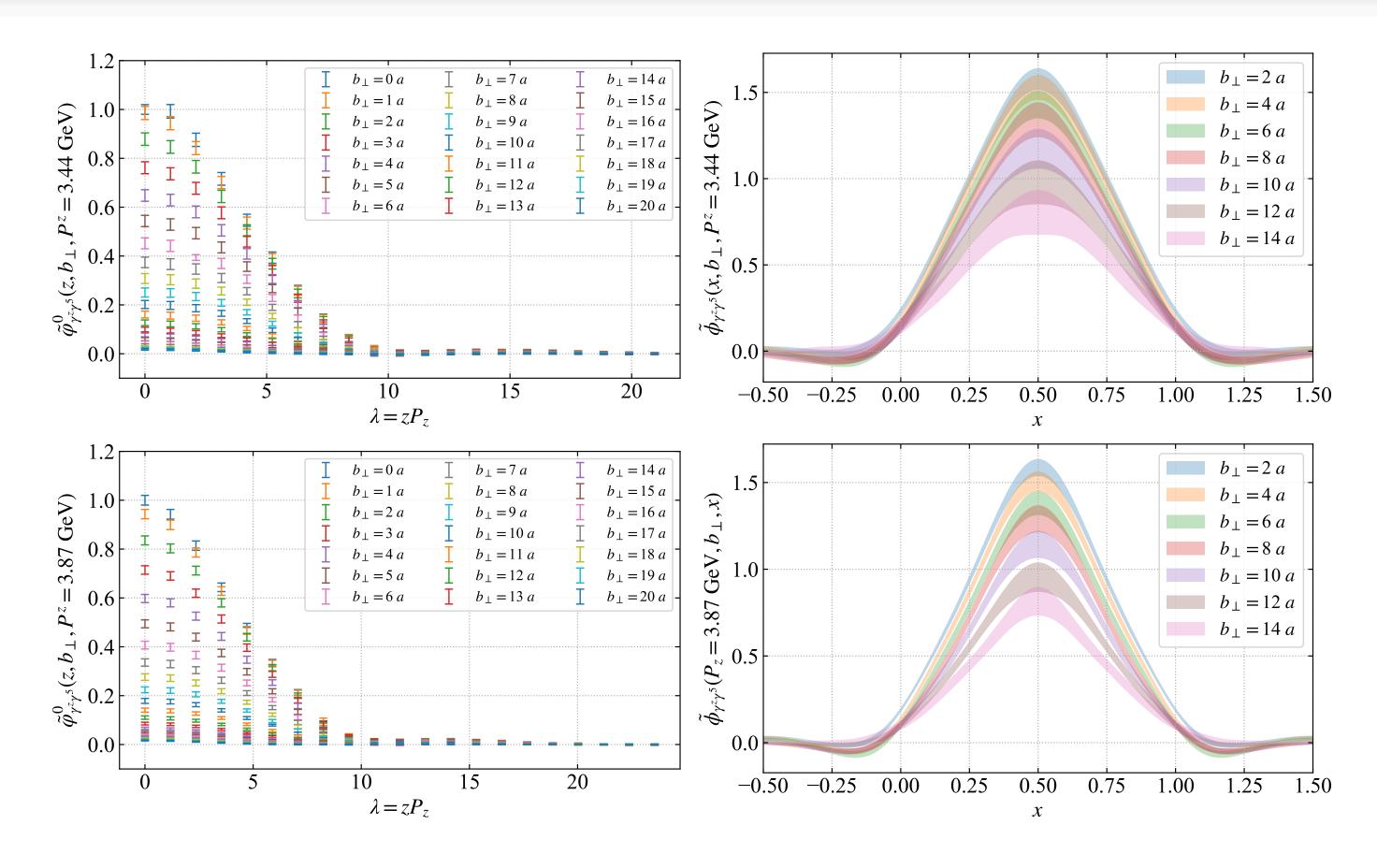
Intrinsic Soft Function

$$S_{I}(b_{\perp};\mu) = \frac{F(b_{\perp},P^{z})}{\int dx_{1}dx_{2}H_{F}(x_{1},x_{2},P^{z};\mu)\tilde{\Phi}^{\dagger}(x_{1})\tilde{\Phi}(x_{2})} \text{ with } \tilde{\Phi}(x) \equiv \frac{\tilde{\phi}_{\Gamma}\left(x,b_{\perp},P^{z};\mu\right)}{H_{\phi}\left(x,\bar{x},P^{z};\mu\right)}$$



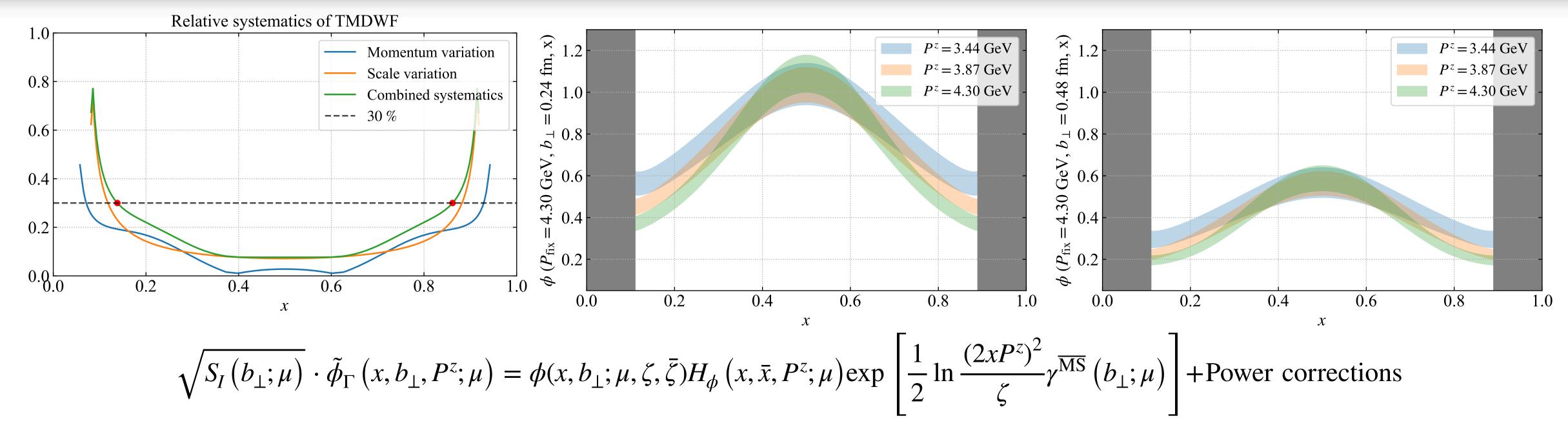
- three momentum pairs.
- Our lattice results are consistent with the perturbation theory in the small b_{\perp} regime;
- o Different momenta of quasi-TMDWF give consistent results;
- \circ Thanks to the absence of linear divergence, our final results of the intrinsic soft function can go beyond $b_{\perp} \sim 1$ fm.

Pion quasi-TMD Wave Function



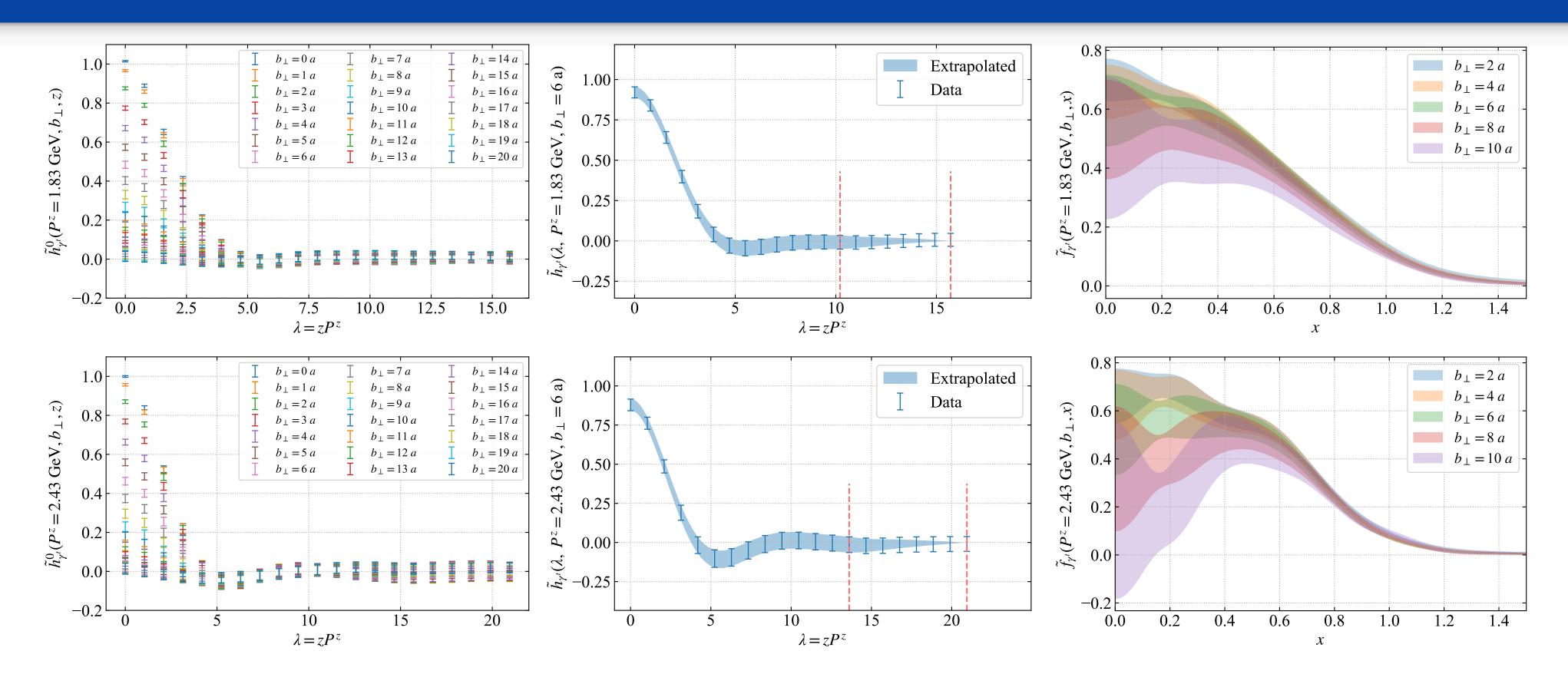
- We did a discretized Fourier transform because of the good convergence in the λ -space;
- The CG matrix elements decay to zero with the error bars remain almost constant, making the FT easy to be under control.

Pion TMD Wave Function



- O The variation between different momenta remains mild in the moderate x region, demonstrating the validity of power expansion in large P^z ;
- The combined systematics are estimated from two sources:
 - o Momentum variation: spread of central values between three momenta / mean of central values of three momenta
 - Vary the initial scale in the RG resummation of matching kernel by a factor of $\sqrt{2}$;
- \circ The 30 % combined systematics are used to quantify the moderate x region that LaMET can make reliable predictions;
- o The convergence between three momenta near the endpoint regions can be improved with larger Lorentz boost factor.

Pion quasi-TMD Beam Function



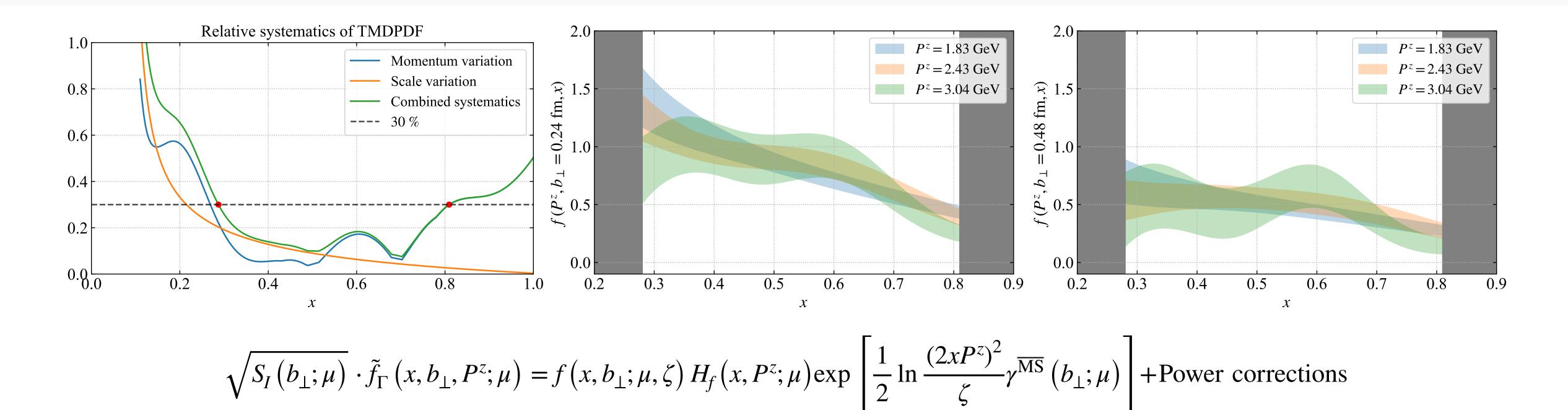
- The CG matrix elements decay to zero with the error bars remain almost constant, making the FT easy to be under control.
- o To remove the non-physical oscillation, we apply the extrapolation to make error bars converge to zero smoothly.

A recent paper on asymptotic analysis in LaMET: J. W. Chen, et al., 2505.14619

 \circ Since quasi-TMD (in moderate x) is insensitive to the extrapolation strategies, the non-fit extrapolation is adopted here:

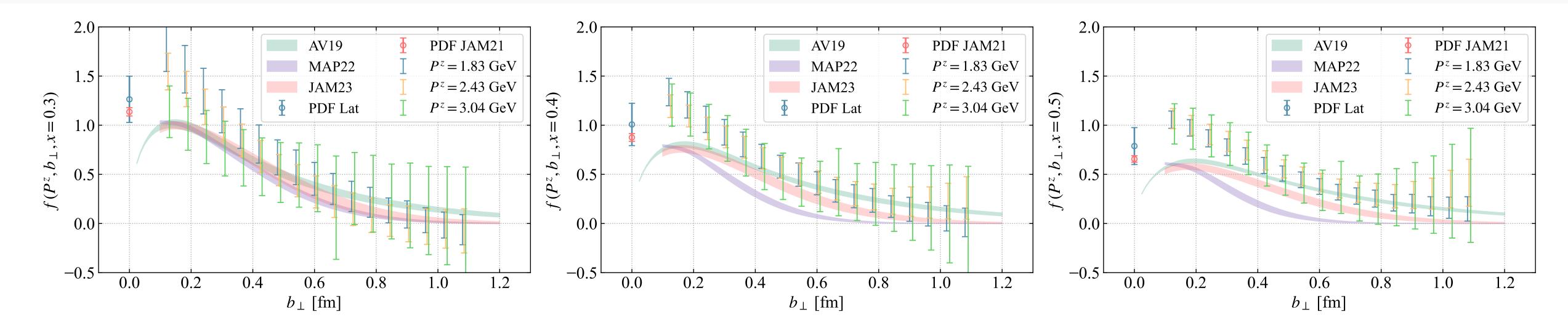
 $\tilde{h}^{\rm ext} = w \cdot \tilde{h} + (1 - w) \cdot 0$, where the weight w(z) linearly decays from 1 to 0 within two red dashed lines below.

Pion TMDPDF in the x Space



- O The variation between different momenta remains mild in the moderate x region, demonstrating the validity of power expansion in large P^z ;
- The combined systematics are estimated from two sources:
 - o Momentum variation: spread of central values between three momenta / mean of central values of three momenta
 - Vary the initial scale in the RG resummation of matching kernel by a factor of $\sqrt{2}$;
- \circ The 30 % combined systematics are used to quantify the moderate x region that LaMET can make reliable predictions;

Pion TMDPDF in the b_{\perp} Space

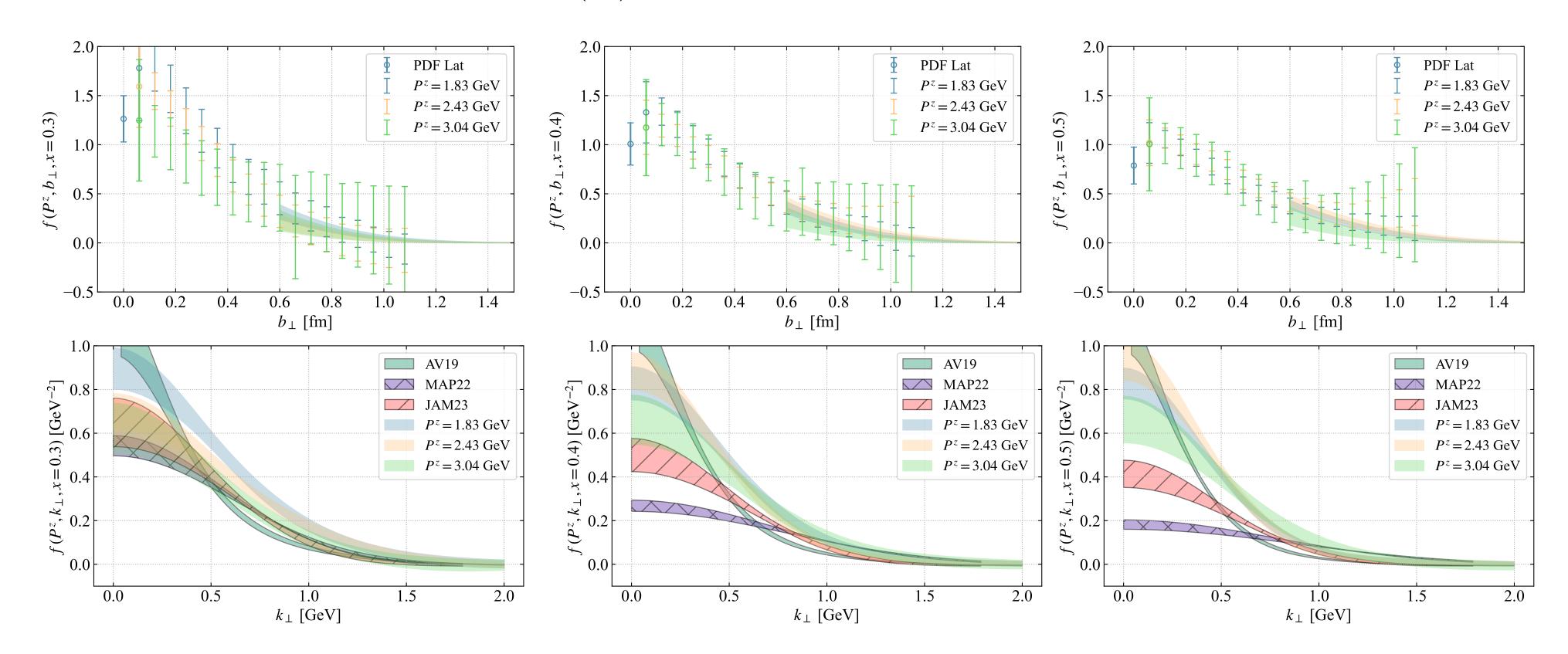


A. Vladimirov, JHEP 10 (2019); M. Cerutti, et al. (MAP), Phys.Rev.D 107 (2023); P. C. Barry, et al. (JAM) Phys.Rev.D 108 (2023)

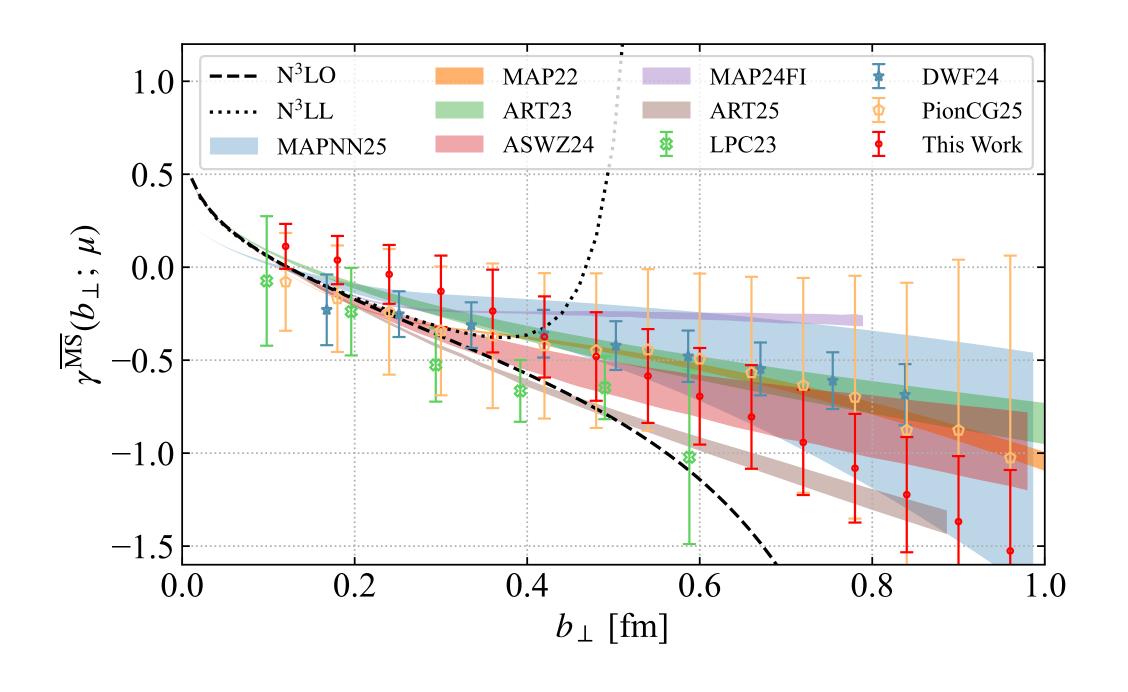
- Thanks to the absence of linear divergence, we can calculate pion TMDPDF up to $b_{\perp} > 1 \, \mathrm{fm}$;
- When x gets larger, the amplitude of TMDPDF is decreasing, while the transverse correlation length stays roughly the same;
- O When x gets closer to x = 0.5, we can find that the variance across different momenta becomes smaller, indicating the suppression of power correction;
- o Global analysis has a better control at relative small, where we saw consistency;
- o Lattice provides predictions at relative large, where experimental data gives less constraints.

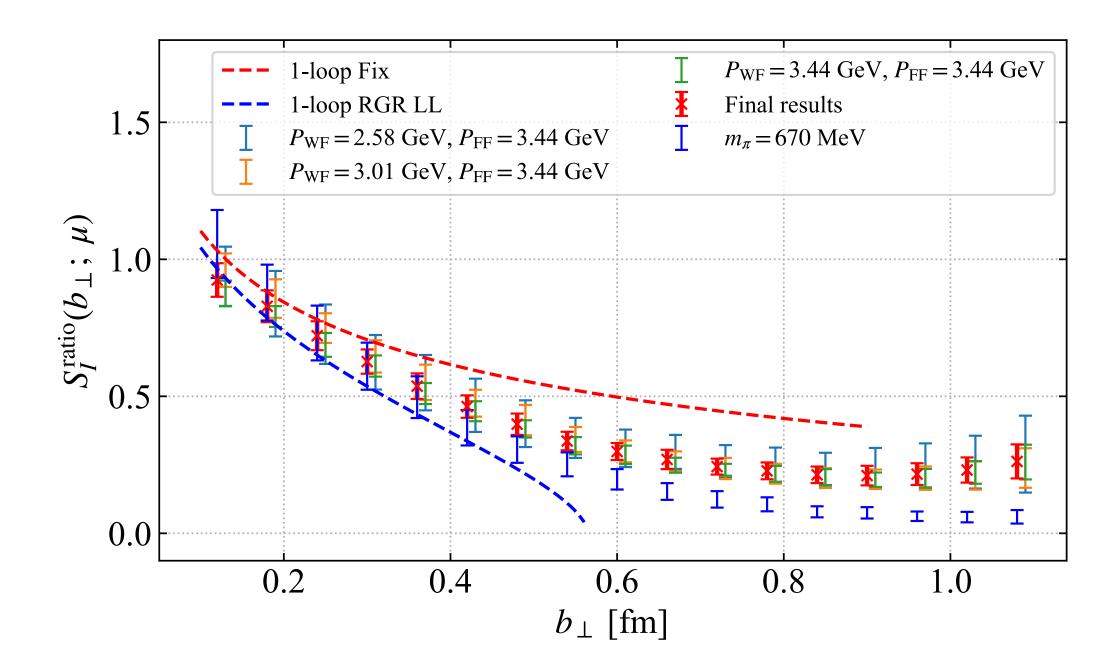
Pion TMDPDF in the k₁ Space

- We can give the k_1 -dependence thanks to the good SNR in CG;
- Extrapolate the large b_{\perp} using a simple Gaussian form: $f(b_{\perp}) = Ae^{-mb_{\perp}^2}$;



Preliminary Results with mpi=300





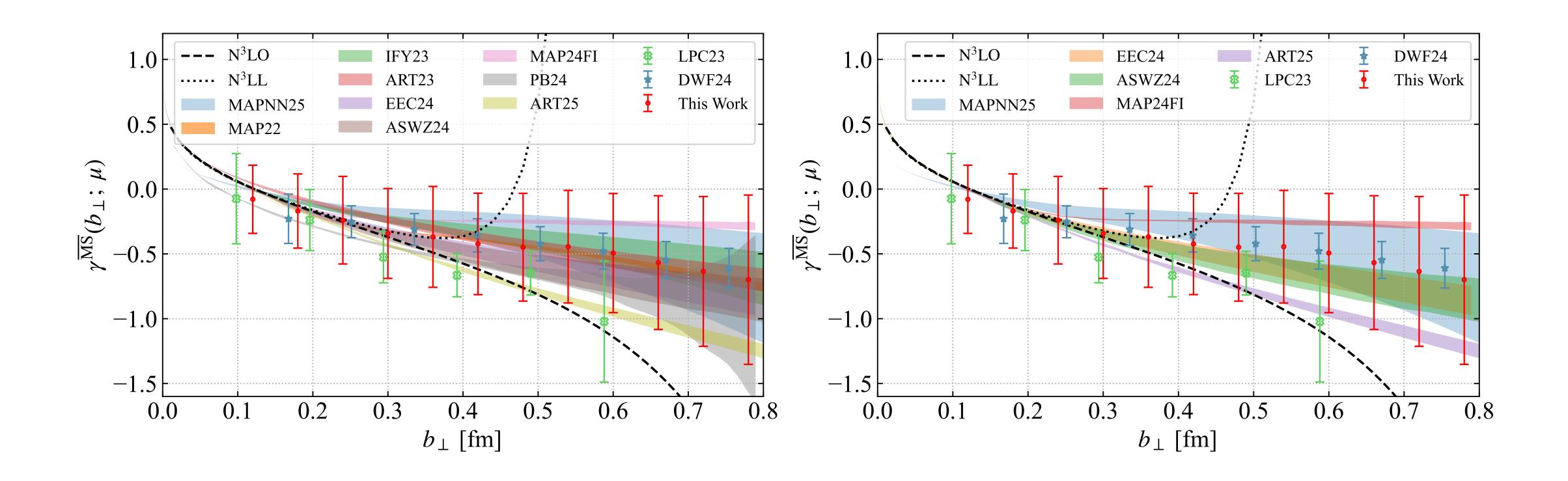
Summary

Summary

- o This is the first lattice calculation of the pion unpolarized TMDPDF within LaMET framework;
- The novel CG method is employed to remove the linear divergence, so that to have a good SNR up to $b_{\perp} > 1$ fm;
- The soft function is extracted at NLL factorization using RG resummation, the results show consistency with perturbation theory;
- The TMDs, including CS kernel, intrinsic function, TMDWF and TMDPDF are calculated using the same lattice ensemble, and the results show consistency with existing studies, including phenomenology and lattice calculations;
- The outcome of this study highlights the efficacy of the CG quasi-TMD approach in probing the transverse momentum structure of hadrons;
- o In the future work, we will apply the CG quasi-TMD approach on nucleon, and the lattice systematics like discretization effects and non-physical pion mass will be investigated in detail.

Backup

CS Kernel



Soft Function in TMD Factorization

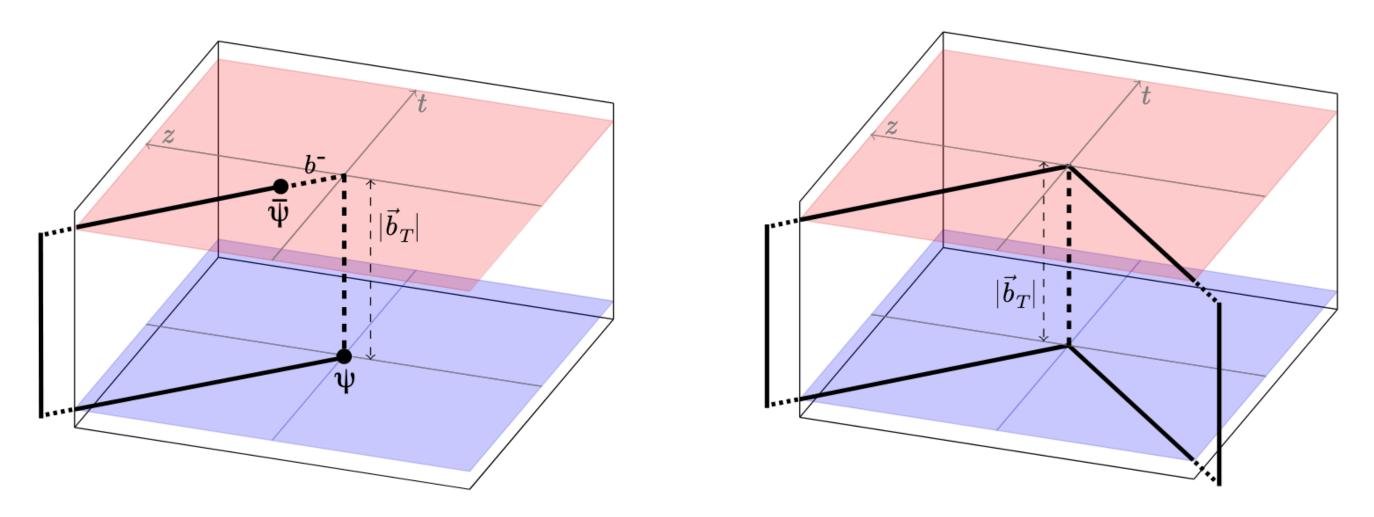
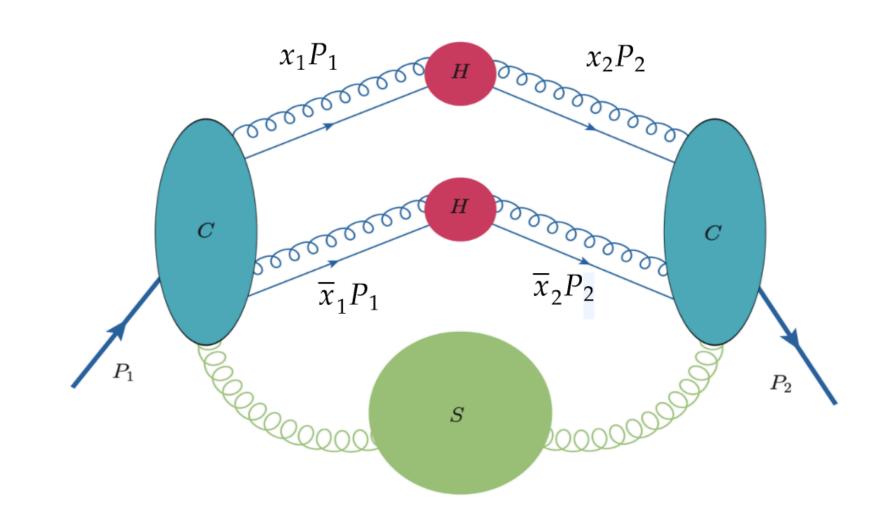


Figure 2.1: Graphs of the Wilson line structure $W_{\square}(b^{\mu},0)$ of the unsubtracted TMD PDF $f_{i/p}^{0\,(\mathrm{u})}$ (left) and of $W_{\geqslant}(b_T)$ for the soft function $S_{n_a n_b}^0$ (right), defined in Eqs. (2.37) and (2.38). The Wilson lines (solid) extend to infinity in the directions indicated. Adapted from [106].

R. Boussarie, et al., 2304.03302 (2023)

Sudakov Kernel



Z. F. Deng, et al., JHEP 09 (2022)

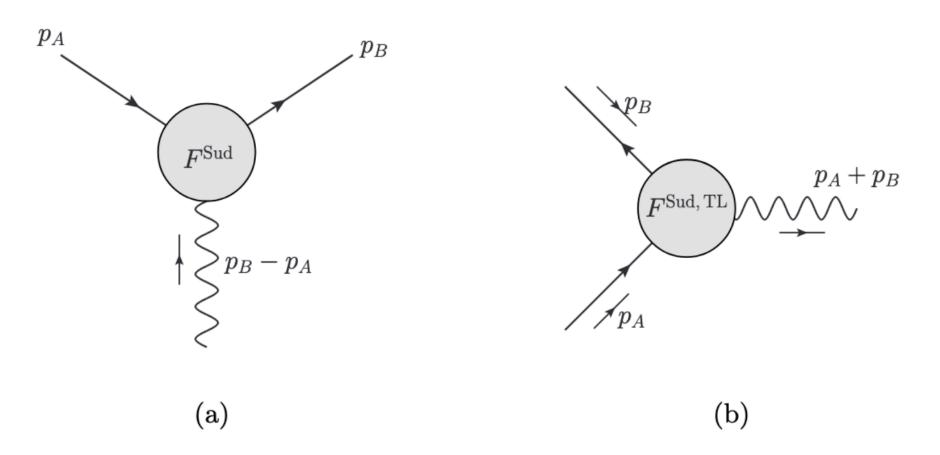


FIG. 1. Graphs for the space-like (a) and time-like (b) quark form factor.

J. Collins and T. C. Rogers, Phys. Rev. D 96 (2017)

$$\begin{split} H_F(x_1,x_2,P^z;\mu) &= C_{\rm Sud}(x_1,x_2,P^z;\mu) \cdot C_{\rm Sud}(\bar{x}_1,\bar{x}_2,P^z;\mu), \text{ where } C_{\rm Sud} \text{ is the Sudakov kernel.} \\ p_A &= (x_1P_1,0,0,x_1P_1), \quad p_B = (x_2P_2,0,0,-x_2P_2) \\ Q^2 &= -(p_B-p_A)^2 = 4x_1x_2P_1P_2 \\ \bar{Q}^2 &= 4\bar{x}_1\bar{x}_2P_1P_2 \end{split}$$

Gauge Fixing in Lattice QCD

Continuous Theory

$$F_{\text{CG}}[A,\Omega] \equiv \frac{1}{2} \sum_{\mu=1}^{3} \int d^4x A^a_{\Omega\mu}(x) A^{\mu a}_{\Omega}(x)$$

$$\begin{split} \delta F_{\text{CG}}[A,\Omega] &= -\sum_{\mu=1}^{3} \int d^4x (D^{\Omega}_{\mu ab}\theta_b) A^{\mu a}_{\Omega} \\ &= -\sum_{\mu=1}^{3} \int d^4x (\partial_{\mu}\theta_a - gf^{cab}A^c_{\Omega\mu}\theta_b) A^{\mu a}_{\Omega} \\ &= \sum_{\mu=1}^{3} \int d^4x \theta_a (\partial_{\mu}A^{\mu a}_{\Omega}) \end{split}$$

Lattice Theory

$$F_{\text{CG}}[U,\Omega] \equiv -\Re \left[\text{Tr} \sum_{x} \sum_{\mu=1}^{3} \Omega^{\dagger}(x+\hat{\mu}) U_{\mu}(x) \Omega(x) \right]$$

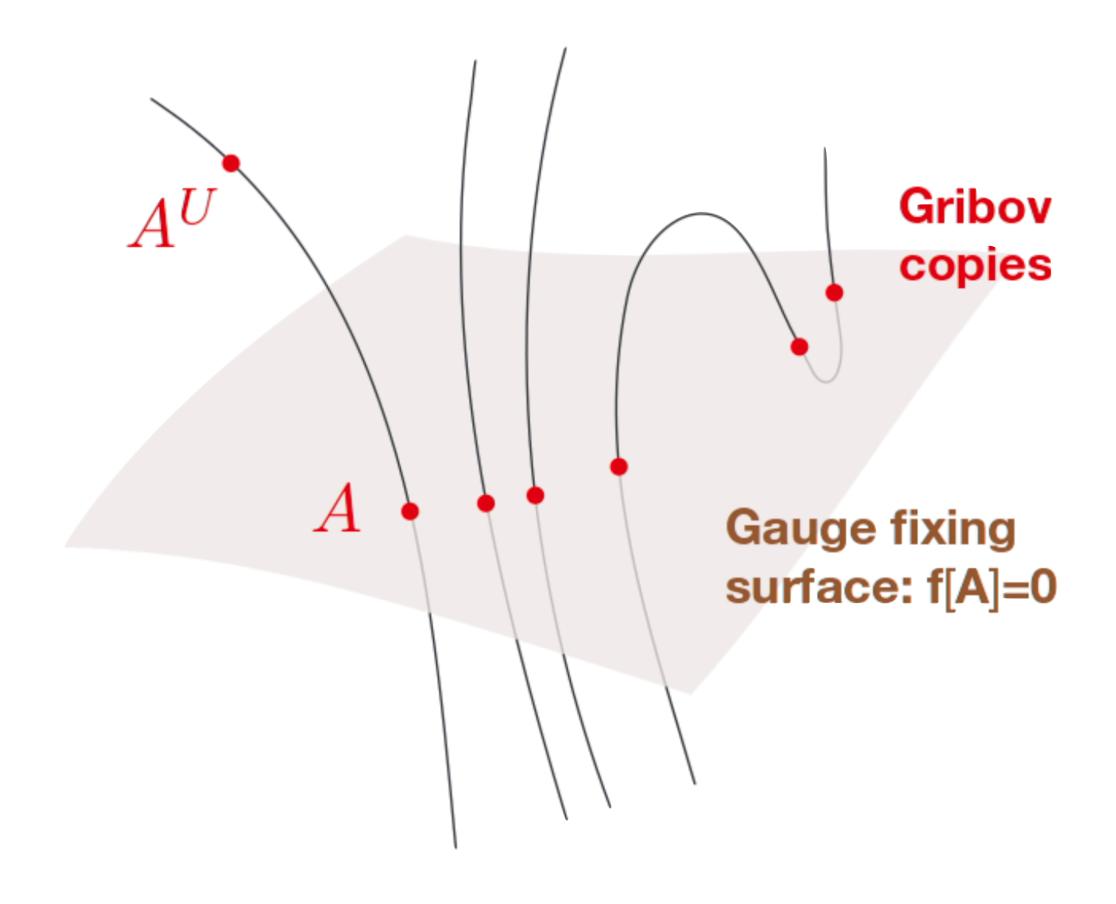
Find stationary points of the functional value.

$$*A_{\Omega\mu}(x) \equiv \Omega^{\dagger}(x)A_{\mu}(x)\Omega(x) + \frac{i}{g}\Omega^{\dagger}(x)\partial_{\mu}\Omega(x)$$

Gauge fixing criterion in this work: variation of functional satisfies $\delta F/F < 10^{-8}$.

Gribov Copies

The gauge fixing condition may have many solutions in Lattice QCD.



Ph. D. Thesis of Diego Fiorentini

Criteria of Gauge Fixing

Variation of the functional

$$\delta F/F < 10^{-8}$$

• Residual gradient of the functional

$$\theta^G \equiv \frac{1}{V} \sum_{x} \theta^G(x) \equiv \frac{1}{V} \sum_{x} \text{Tr} \left[\Delta^G(x) \left(\Delta^G \right)^{\dagger}(x) \right], \Delta^G(x) \equiv \sum_{\mu} \left(A^G_{\mu}(x) - A^G_{\mu}(x - \hat{\mu}) \right)$$

