
Scattering
 

Partial Wave Analysis
 
Formalism
 
Suppose we have a spherical symmetric potential , then the Schrodinger equation isV r( )
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the general solution is
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introduce a new variable , then we haveu r = rR rl( ) l( )
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For the very far away region, both the potential and the centrifugal contribution are negligible, we got
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we just take the first term, which is an outgoing spherical wave, then
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it is consistent with the expectation.
 
For the intermediate region, where the potential can be ignored but the centrifugal term cannot, we got
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u r = Ar · j kr + Br · n krl( ) l( ) l( )
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To get the form like , change to use spherical Hankel functionseikr

h x ≡ j x + in x ,  h x ≡ j x - in x1
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We want an outgoing wave, so take the first kind of the Hankel function, then the wave function in the region 
with  can be written asV r ≈ 0( )
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Considering our potential is spherical symmetric, so we take the  term only, thenm = 0
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Then rewrite the wave function (in the exterior region) as
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When , we haver ∞→

h kr -i ·1
l ( ) → ( )l+1

e

kr

ikr

𝜓 r,𝜃 A e + f 𝜃( ) → ikz ( )
e

r

ikr

in which the scattering amplitude is
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The differential cross section is
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the total cross section is

𝜎 = 4𝜋 2l + 1 |a |∑
 

l=0

( ) l
2

 
 
Strategy
 
For consistency, we rewrite the incident wave as

e = i 2l + 1 · j kr · P 𝜃ikz ∑
 

l=0

l( ) l( ) l(cos )

then the wave function in the exterior region is
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Phase Shifts



 
Firstly consider the free particle situation without potential, we should have
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in which the second term (incoming wave) comes from the incident plane wave.
Then consider the angular momentum conservation, each partial wave (with specific ) scatters independently, l

so the influence of potential will just be the extra phases in each -mode asl
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it can also be written as the previous form with  asal
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Then the scattering amplitude and the cross section can be written as

f 𝜃 = 2l + 1 e 𝛿 · P 𝜃( )
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To determine the Phase Shift
 
Define 
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where  is the boundary between interior and exterior.r = R
Then for the interior region, this beta can be calculated with Schrodinger equation, while for the exterior region 
it is related to the phase shift as
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Born Approximation
 
We have the general solution to the Schrodinger equation takes the form 
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in which the  represents the forward evolving wave function.+
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e ≈ eik| - '|r r ik r- · '( r̂ r )

≈
1

| - '|r r

1

r

then we have

𝜓 = e - d r' e V ' 𝜓 '+(r) i ·k r 1

4𝜋

2m

ℏ2

e

r

ikr

∫ 3 -ik · 'r̂ r (r ) +(r )

Considering the scattered wave function can be written as
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we got the expression of the scattering amplitude as
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The first order Born approximation takes

𝜓 ' ≈ e+(r ) i · 'k r
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the second order Born approximation can be found in Eq.(6.86) in Sakurai.

To further simplify it, we set the momentum transfer , and ,  is the angle between = - kq k r̂ | | = 2kq sin
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 and , in which  is the input momentum direction,  is the output momentum direction.r̂ k k r̂
Then the integral can be evaluated as
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The differential cross section can be written as
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When is the Born approximation applicable?
 
Short answer is as long as the second order perturbation is smaller than the first order, or
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For low energy scattering with ,  is the effective radius of the potential,kr ≪ 1 a
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For high energy scattering with ,kr ≫ 1
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if , Born approximation is always good.k ∞→
 

Optical Theorem
 
Hand-waving proof:
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Useful application
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