Scattering

Partial Wave Analysis

Formalism

Suppose we have a spherical symmetric potential V/(r), then the Schrodinger equation is
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the general solution is
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introduce a new variable u;(r) = ¥R;(r), then we have
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For the very far away region, both the potential and the centrifugal contribution are negligible, we got
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we just take the first term, which is an outgoing spherical wave, then

it is consistent with the expectation.

For the intermediate region, where the potential can be ignored but the centrifugal term cannot, we got
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To get the form like eikr, change to use spherical Hankel functions
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We want an outgoing wave, so take the first kind of the Hankel function, then the wave function in the region

with V(r) = 0 can be written as
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Considering our potential is spherical symmetric, so we take the 71 = O term only, then
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Then rewrite the wave function (in the exterior region) as
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in which the scattering amplitude is
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The differential cross section is
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the total cross section is
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Strategy

For consistency, we rewrite the incident wave as
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then the wave function in the exterior region is
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Phase Shifts



Firstly consider the free particle situation without potential, we should have
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in which the second term (incoming wave) comes from the incident plane wave.
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Then consider the angular momentum conservation, each partial wave (with specific [) scatters independently,

so the influence of potential will just be the extra phases in each [-mode as

20+ 1 4y ik
U = AW[(Z (k200 _ (_1)leik ]Pl(cos 0)
Y1 = A-i'Q1+ DR,(r) - Py(cos 6)

it can also be written as the previous form with 4; as
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Then the scattering amplitude and the cross section can be written as
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To determine the Phase Shift
Define
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where ¥ = R is the boundary between interior and exterior.
Then for the interior region, this beta can be calculated with Schrodinger equation, while for the exterior region
it is related to the phase shift as
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Born Approximation

We have the general solution to the Schrodinger equation takes the form
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in which the + represents the forward evolving wave function.

When ¥ — 00,
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Considering the scattered wave function can be written as
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we got the expression of the scattering amplitude as
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The first order Born approximation takes
>, .‘>.—>,
¢+(1’ ) ~ elk r

Then we got
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the second order Born approximation can be found in Eq.(6.86) in Sakurai.
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To further simplify it, we set the momentum transfer § = k — k7, and |g| = 2k sin > 0 is the angle between

-> >
7 and k, in which k is the input momentum direction, 7 is the output momentum direction.

Then the integral can be evaluated as
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The differential cross section can be written as

When is the Born approximation applicable?

Short answer is as long as the second order perturbation is smaller than the first order, or
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For low energy scattering with k¥ << 1, a is the effective radius of the potential,
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For high energy scattering with kr > 1,
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if k — oo, Born approximation is always good.
Optical Theorem
Hand-waving proof:
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Useful application
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