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Discretization: Lattice gauge theory (LGT) discretize the space-
time into a finite lattice in Euclidean space. 

Monte Carlo Sampling: Replace the path integral with Monte 
Carlo integration (Wick rotation to Euclidean space). 

 

Then the expectation value becomes average on configurations. 

 

Critical Slowing Down [1]: Low autocorrelation is required to 
ensure effectively independent samples. However, as we 
approach the continuum limit (larger volumes and smaller lattice 
spacing), autocorrelations in the Markov chain increase rapidly.
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ARCHITECTURAL DESIGN NUMERICAL RESULTS

LATTICE GAUGE THEORY NEURAL FIELD TRANSFORMATION
Topology Freezing: One reason of critical slowing down is that Markov chain will be trapped in 
a topological sector when approaching the continuum limit.  
Trivializing Map [2]: We can reduce autocorrelation and boost topological tunneling via field 
transformation. 

 

Then Monte Carlo sampling is performed in the space of auxiliary field  with new action. 

 
Neural-network Transformed HMC (NTHMC) [3]: Motivated by the concept of trivializing 
map, we can construct invertible gauge-covariant field transformations using neural network. 

✦ Our objective function is to minimize the gradient of action; 

 

✦ We employ convolutional neural network (CNN) to construct an invertible, gauge-covariant 
and local field transformation, which can be naturally extended to larger lattices.
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✦Residual blocks and channel-dependent activation (Tanh) lead to improvements over the 
Base model, and the combined design (Comb) yields the strongest effect, achieving 
nearly a 40% improvement; 

✦As the coupling  increases, all NTHMC models exhibit a higher sampling efficiency 
compared to standard HMC, and the efficiency does not show statistically significant 
changes with increasing lattice volume, indicating that our method can be effectively 
extended to larger volumes and finer lattices. 

✦ Interestingly, wider receptive field does not hinder transferability. A possible explanation 
is that, as the continuum limit is approached, infrared (long distance) structures are 
preserved while ultraviolet (short distance) details become refined, so the transferable 
features are precisely the long-range correlations that benefit from a relatively wider 
receptive field.
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Comparison of HMC and NTHMC with the Base model 

 

Comparison of NTHMC with various network architectures 

 

To assess the sampling efficiency of HMC and NTHMC, we consider two 
complementary metrics: 

✦The first is , which measures the relative independence of the configuration 

 

where  is the autocorrelation of the topological charge and  is the topological 
susceptibility; 
✦The second metric is the average topological change ∆Q, the mean absolute shift 

in topological charge per HMC step, which probes the tunneling between sectors; 
larger values of ∆Q indicate more frequent topological transitions and more 
efficient sampling.
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Hybrid Monte Carlo (HMC)[4]: Generates lattice gauge configurations by 
introducing conjugate momenta, evolving the fields along molecular-dynamics 
trajectories in an extended phase space. Inside the HMC update we employ the 2nd 
order minimum norm symplectic integrator [5] with 10 MD steps per trajectory, 
tuning the step size to achieve∼80% acceptance. 

NTHMC: To maintain gauge covariance, the link variables on configurations are 
updated using the form 

 

where  are Lie algebra projection of gauge-invariant Wilson loops and 
coefficients  are parameterized using CNN. To get a tractable 
Jacobian , the lattice links are partitioned into eight disjoint subsets and updated 
sequentially. In U(1) gauge theory, an invertible field transformation requires 

 

In the figure below, red lines mark one of the eight link subsets updated 
sequentially, green lines indicate Wilson loops  and blue lines show the gauge-
invariant features (X,Y,...) used as CNN inputs. 

 

Base: Two-layer CNN that processes six input channels (two plaquette, four 
rectangle). A first 3×3 convolution maps them to 12 hidden channels with GELU 
activation, followed by a second 3×3 convolution producing coefficients, which are 
scaled by arctan to ; 

Tanh: Replace arctan with tanh, set  and ; 

Resn: Add two residual blocks (two 3x3 convolutions with skip connections); 

Attn: Add channel-attention module between the two convolutions in Base; 

Comb: Combine architectures of Tanh, Resn, Attn above.
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