Fit functions for correlations on Lattice

Basics

Complete basis in the Fock space
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Time and space transition, note here we did Wick rotation ity = t, all the time below are in the Euclidean
space
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Two-point correlation function

Correlation on Lattice

Copt = f #3370 0,43, £.4)040,0)| Q)

Inserting complete basis, we have
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The operator O will project the state with specific quantum numbers, but it is still a superposition of the
eigenstates of Hamiltonian, because there are many excited states with the same quantum numbers, so we got
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Correlation in software

We would like to construct 2pt operator in Chroma / QLUA / GPT etc., we take the 7t as an example
O (x t) = (x t)y u(x t)
t — _ 5
On+ (x/ t) - u(x/ t)y d(x/ t)



so the operator is
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note here quark field exchange will give extra minus signs. Then use the hermiticity relation [ Gattringer P136
(6.31)]

> 5

N
$4(0,0;%,t) = y°SH(¥, £;0,0)y°

Fit function
We define overlap factors as
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Then we got the fit function for 2pt correlation
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Three-point correlation function

Correlation on Lattice
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in which O c is the inserted current.

Inserting complete basis, we have
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The operator O will project the state with specific quantum numbers, but it is still a superposition of the
eigenstates of Hamiltonian, because there are many excited states with the same quantum numbers, so we got



En> o Enltr=)

Oc(0,0)|E, e ™ (E,.|040,0|2)
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Correlation in software [Take PDF as an example]

We would like to construct 3pt operator in Chroma / QLUA / GPT etc., we take the 77" as an example
O_.(%,t) = d(x, )y u(, t)
Of.(%,t) = —u(x, t)y°d(x, t)
and the quasi-PDF operator of u quark is [check out Peskin 18.5]

O, t;z) = Uz +1, )y Wz +, £y, Hu(y, )
so the 3pt is
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Take trace and use Wick theorem Gattringer P109 (5.36), 2 d fields contract, 4 u have 2 kinds of contraction,
then we have
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two terms in the integral represent two diagrams, take the first one as an example.
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in which red part is sequential source, and the underlined part is the sequential propagator.

- -
* We need to avoid calculating all to all propagator, like S, (X, tsepr Z+Y, t) (x and y are both integrated),

that's why we define the sequential source and sequential propagator
Use the hermiticity relation, we have
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the 1 here acts on spinor and color indices. So, sequential propagator becomes
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Fit function



We define overlap factors as
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define matrix elements as
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Then we got the fit function for 3pt correlation
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Definition
C3pt(tsep/ t)
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Fit function
With the fit function of 2pt and 3pt above, we have
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If we just keep 2 states, then we have approximation
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Feynman-Hellmann correlation

Definition



t=t gop =Ty t=top—T

cut

FH(tyy Taydt) = | D) Rlte,+dt, = D, Rte, D)|/dt
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Fit function

Firstly, let's derive the fit function of the summation as
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If we preserve the first two energy states,
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If we ignore e.s. to set AE = 00, then it becomes
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So, when realize it in the code, the suggestion is defining a function for the summation S (tsep, Teut), then

calculate the FH correlation as
S(tsep + dt/ Tcut) S(tsepl Tcut)
C2pt(tsep + dt) CZpt(tsep)

FH(tsep/ Tcut/ dt) =



