Beta Function of QED

Key points

* RG evolution and equation
* The Callan-Symanzik Equation
* 1-loop renormalization of QED

* Another way to get the S-function

Details

RG evolution and equation

Two parameters are introduced during renormalization: arbitrary parameter 1 and renormalization scale M.
* The arbitrary parameter (1 is introduced in the Dimensional Regularization to balance the dimension of
the coupling g.
+ The renormalization scale M is the scale that we set the renormalization condition, in on-shell
condition, it is the scale that you do experimental measurements to get physical values.

Renormalization is changing variables but leaves Lagrangian invariant, so
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where
bo = Z*P(M)
My = Z},{ZZ(;l/zm(M)
Ao = Z;ZM(MW
It can be found that those bare quantities do not depend on i nor M, so the choice of u and M does not affect

the field theory and its prediction. [Next we will use VS scheme, so there is no M dependence in

renormalization parameters. In contrast, if we use on-shell scheme, we will have M dependence.]

Therefore, to get the RG equation of coupling, take derivative of u on A¢, we got
InAg = 1n(zq-sz) +InA+elny

After the 1-loop calculation, we got the renormalization constants Z, then the RG equation above can be solved
to get the evolution of the coupling constant.

For example in ¢4 theory with MS scheme, we have
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the the RG equation becomes
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drop the A2 term, we got
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Similarly, we can also get the RG evolution of mass via taking the derivative of U on 119
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then we dropped A? terms to get the anomalous dimension
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The Callan-Symanzik Equation (Peskin Ch.12.2)

Except for coupling and mass, we can also consider the evolution of correlation functions, the bare correlation



function can be written as

Guo(x1, .- xn) = (QT{Po(x1) ... Po(xy)}C)
since the vacuum state does not depend on renormalization, we have
Gnlo(xl, cee xn) = Zg/an(xl, cee xn)

do the same process as on coupling and mass above,
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We know that the renormalized correlation function depends on A, m1, L, so we have
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we can define an anomalous dimension )/ = E 11 , then we got the Callan-Symanzik Equation
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1-loop renormalization of QED

The bare Lagrangian of QED is

Lo = iy ofipo - }LFS —ep oA o = iZagdy - %ZsFZ —eZy A

the free part and the perturbation can be separated as
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where L is the perturbation.

Consider the 1 loop correction of the photon self-energy, there are two diagrams



Then the self-energy can be written as
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the first term can be simplified as
—4€2f A4 1R+ 1) + 1V (k + 1)E — g7 (1 (k + 1))
2n)* 12(k +1)2

use dimensional regularization and Feynman parameterization, we got
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replace the variable § = [ + xk and A = —x(1 — x)k?, then we got
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drop those terms with odd power of g, then we got
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using the identity (Peskin Eq.(A.41) - Eq.(A.45))
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it is simplified as
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and we know that (Peskin Eq.(A.52))
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So, the self-energy can be written as
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In MS scheme, the renormalization parameter is
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where @ = —.

Consider the 1 loop correction of the electron self-energy, there are two diagrams
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Then the self-energy can be written as
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The first term can be simplified as
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Using Feynman parameter to get
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replace variables by § = [ —xp and A = x(x — 1)p , using dimensional regularization and drop the odd
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using the identity (Peskin Eq.(A.41) - Eq.(A.45))
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power term of g, then we got
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and we know that (Peskin Eq.(A.52)) in the d = 4 case,
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so the self-energy can be written as
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In MS scheme, the renormalization parameter is
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which is consistent with Eq.(19.25) in Schwartz.

Consider the 1 loop correction of the electromagnetic vertex, there are two diagrams
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the correction can be expressed as
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Similarly, dimensional regularization, then we got
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Feynman parameterization
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then we simplify to get
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In MS scheme, the renormalization parameter is
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which is consistent with Eq.(19.56) in Schwartz.

In conclusion, take we got the 1-loop renormalization parameters of QED as
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so the relation between the bare coupling and the renormalized coupling is
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note here the power of (i is € /2, because [A] =d/2-1,[¢] =d/2-1/2 and[e] =2-d/2 =€/2.
Take the derivative on In y, note In Z1 —In Z, = 0, we got
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Another way to get the S-function

We can also use the Callan-Symanzik Equation to get the -functon, check Peskin Ch.12.2, P411.

Comments

» Beta function depends on regularization and renormalization scheme, different scheme will leave
different parameters to evolve;

» Beta functions from different scheme are consistent at the 1-loop level,

+ If we want to compare with the scale evolution in experiment, we need to use on-shell scheme, but it is
more complicated;

* We always have two ways to get the beta function, one is directly deal with the renormalization
parameter of coupling, another is using the Callan-Symanzik Equation (need to calculate anomalous
dimensions), the difference is just some more derivatives.



