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1. HERMITIAN OPERATOR AND UNITARY OPERATOR

o Hermitian: H' = H
e Unitary: UTU =1
1.1. Hermitian Operator.
e (a|H|a) is real
e Eigenvalues of H are real
H i) = hlp)
(V[Hp) = h{¥[¥)

e Eigenvectors of H with distinct eigenvalues are orthogonal
e One can always construct an orthonormal basis out of eigenstates of H

e Each physical quantity is associated with a Hermitian operator, and can be written

as A =3, aili) il
1.2. Unitary Operator.

e One can always use a unitary operator to diagonalize a Hermitian operator
e We can always use a unitary transform to diagonalize |i') = Uli)

e General unitary operator for 2-d QM space: U(4,0,n) = et g — eié[cos(g) +

in - Esin(g)]

o () [ ) )

If u is the eigenvalue of a unitary operator, we have |u|? = u*u = 1
UteBU = eU'BU and (eB)T — B

If H is a Hermitian operator, then e

is unitary

1.3. Schmidt orthogonalization.

Any unitary operator U can be written as e, where H is a Hermitian operator
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2. Bra, KET AND OPERATORS

1. Basic.
o (a|p)” = (Ble)
e (a]a) is real
o (aay >0
e Given a set of orthonormal basis, an operator can be written as A =) A;;|i)(j|
o (A) = (¢|AJy) does not depend on basis
o () = (el and B(p) = (pl¢)

2.2. Different kinds of operators.

e Projection operator — measurement
e Hermitian operator — physical quantity
e Unitary operator — transform of basis / operator

2.3. Commutator.
e Jacob Identity: [A,[B,C]] + [B,[C,A]]+ [C,[A4,B]] =0
e compatable(can be measured at the same time) means [A, B] =0
e If [A, B] # 0, we have 030% > 1|([A, B])|?

(A~ (A)¥|(A ~ (A)w) = (fIf)
(B~ (B)Y|(B —(B)¥) = (glg)

bw
Il

2
op
o40p = (fIf){glg)
(f1£)(glg) = |(f]g)]?

(Flo)? = (W) <<f’9>2<9’f>> <<f\g>2—<g\f>>

2.4. Pauli Matrix.

=0l 106 1=( 9 3)

I
7N
< |

-~
"

oy = =i D+ D(T]

—inel-1uel=( g %)

[} [O'i,Uj] = 2i5ijk0'k

o {0j,01} =261

e General Hermitian matrix H = h1I+h-G, with Det[H] = h? —h? and Tr[H] = 2h,
e Eigenvalues A of H satisfy A> — NXT'r[H| + Det[H] = 0, A = hy + ||
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Operator h - & has eigenvalues £1, and is commute with H
Operator 0”7 Y(¢) = cos(p)o, + sin(¢)o, satisfies [%, 07 7Y(¢)] = —ia%ax_y(qﬁ)
1% 0T U(G)e " F = 07 V(g +0)

(h-G)2=1
() = cos I + isinf(n - &)
Tr(o;0;] = 20;;

3. ENTANGLEMENT AND TENSOR PRODUCT

e Entangled state cannot be written as a tensor product
e Not entangled state / a tensor product can be considered as two isolated quantum

systems
Definition of the tensor product

0 010
(1) 2 _ 0 0 01
7 O =19 9 0 0
01 00

3.1. Density matrix.

Reduced density matrix: p$) = Tra[py)]

For any operator O(1) and any state [¢), Tr[p,OM) @ I?)] = Trl[pfpl)O(l)]
Tri[pl))] = 1

Projection operator on a pure state has one eigenvalue 1 and all others are 0
1) is a pure state if Tr[p?p] =1

S = —Tr[plog(p)], pure state will have S =0

4. ABOoUT MOMENTUM

4.1. Basic.

Start from the assumption (z|p) = const e’®

With (p|p") = 6(p' — p"), we have (z|p) = —L-eP®

var
p is the generator of infinitesimal transition e?%0|z’) = |2/ — x¢)
[xaﬁ] - Z(‘) 9
plz) = igg|r) and (z|p = —ig; (x|

4.2. Quantum Dynamics.

U is an unitary operator satisfies |1(t)) = U(t)]1(0)), then U0 = H is a Hermit-
ian operator

% (wotw) = %f —0
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zU(t) = HU(t), where H is Hamiltonian, then we got H|y(t)) = i%hj}(t)) and
U(t, tO) — 6—iH(t—t())
When H(t) depends on time, U(t,ty) = T[exp(—i f;; H(t")dt")]

: 7 " S\ ! T T (41
17 [(—J;; dt' i (t’)) } = (=)™ [y dtt [ de*-- [0 at"H (tY) H (t2) ... H (")

)

5. HEISENBERG PICTURE
Af(t) = U (1) ASU (1)
AT (t) = i[H, AT (t)]
e When H = £ 4+ V(2), # = i[H, ") = 2 and p* = —V'(21)
5.1. An example of spin % particle.

We put an electron in a magnetic field, then the Hamiltonian is H = —f - B and

fi = —gups=—gupg, in which pup = 35

Let B = Byz, we have H = %guBBocfz = %w(fz. So, U(t) = exp(—iwt%), and we have

§g Et% cos(c(ut)) sin((wt)) 8 éggg;
5, (t = | —sin(wt) cos(wt 5
st ) 0 o 1)\ st

5.2. Simple 1-d Harmonic Oscillator.

We have the Hamiltonian H = ﬁpQ + 3mw?z?. Replace with & = /mwz and p = \/%,
it keeps [z, p] = i. Now, H = ¥(p* + ?).
With Heisenberg equations of motion, we have 2 = z[fI, #H] = wp and pH = —wiH.
The solutions are
1 (t) = cos(wt)z (0) + sin(wt)p (0)
P (t) = — sin(wt) 27 (0) + cos(wt)p™ (0)
which is same as the classical solutions.
Also, there is another way by changing variables

a=—7—(T+1
5 (7 +p)
1
AT — (5
a 2(:c ip)
Then we have a’ (t) = e™ta(0) and (a") (t) = e=*(a")H (0).

[a,a'] =1

N =ala =13 +p% - i[p,7], 50 H = (N + H)w

aln) = v/nln — 1) and af|n) = v/n + 1|n + 1) (Here n can only be the integer)
Partition function Z(8) =3 e PEn Tr[U(—iB)] = Tr[e #H] = Z(B)

5.3. About the derivative of Dirac delta function.
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5.3.1. Definition.

5 (z) = }lg% o(x + h})L — ()

5.3.2. Properties.
§(—x) = —8(x)

28 (z) = —6(x)

/ " b () ple)de = - / " (@) (2)dr = ¢ (2)|amo
/ (e - ool = / " b — 2')g (a!)de = o/ (a)

5.4. Schrodinger Equation in 3-D coordinate space.
e Strat from H|i)) = i2 ), we can get (% ]pp + V(@) = (_222 + V(@2)(Z,t) =
T G0) = 15 P(T,1)

5.4.1. Propagator and Green’s function.
Basically, we want to get (2, t) with (&, t9). As we know, [1(t)) = U(t, to)|v(to))-

V(1) = (@) = [T (70 (¢, 10)|&) (@[ (t0)) = JPTE (@ 4T t0)y (T, to), in
Wthh K isa propagator

(— o V(Z) =i 2)(F, 1) = Oy(&, ) = 0, we have OK (Z,1; @, tg) = —id3(&—7)3(t —to).
We call K is the Green’s function of O.
5.5. Gauge Potentials and Electronicmagnetics.

Hamiltonian for charged particle in Electronicmagnetic field is H = (F—qA)” qA + q¢.
° EzﬁXfTandEz—ﬁgf)——
e Here canonical momentum p is not equal to m¢ and does not corresponding to

”mechanical momentum”, but this is the the only way to write a Hamiltonian
formalism in terms of local object.

5.5.1. Gauge transform.

A(Z,t) — A'(Z,t) = A(Z,t) + VA(Z, t)
(T, 1) = (3,1) = B(, ) — 57"
The transform leave E, B and all physical things the same.
This corresponding to an unitary transformation that leave all matrix elements of
Z unchanged but can alter g, which is not physical and cannot be measured unless
A is specified.
The expression is U = exp(—iqA(a:U')). Obviously, UTf(aA?)U = f(aic’), UtpU = p—
VA L
UN(p— qA(@))U = p— qA'()
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An example: B= Boni, A= xBoriy.
Schrodinger Equation: i(—aa—;g — g—; (ia% —xqBo)*)Y = Ev

2m
Consdiering there is no dependence on y and z apart from derivatives, we assume ¢ =
eif=% . eifyy . f(z), where P, and P, are numbers.
B 192 1,2 Py \2 , P? —
= I we have [—g 055 + gmuwg(z — 00)” + 951 f (@) = Ef(2).
2
The first two terms are Harmonic Oscillator, so £ = ;zn +wp(n+ 3). (Each set of wave

functions with the same value of n is called a Landau level)

Introduce wy

6. HOMEWORK TRICKS

6.1. Problem Set 2, Q3. 2-D Hermitian matrix can be decomposed into the linear com-
bination of I, 0, o, and 0.



