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1. Hermitian Operator and Unitary Operator

• Hermitian: H† = H
• Unitary: U †U = I

1.1. Hermitian Operator.

• h↵|H|↵i is real
• Eigenvalues of H are real

H| i = h| i
h |H| i = hh | i

• Eigenvectors of H with distinct eigenvalues are orthogonal
• One can always construct an orthonormal basis out of eigenstates of H
• Each physical quantity is associated with a Hermitian operator, and can be written
as A =

P
i
ai|iihi|

1.2. Unitary Operator.

• One can always use a unitary operator to diagonalize a Hermitian operator
• We can always use a unitary transform to diagonalize |i0i = U |ii
• General unitary operator for 2-d QM space: U(�, ✓, n̂) = ei�ei✓n̂·
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• If u is the eigenvalue of a unitary operator, we have |u|2 = u⇤u = 1

• U †eBU = eU
†
BU and (eB)† = eB

†

• If H is a Hermitian operator, then eiH is unitary
• Any unitary operator U can be written as eiH , where H is a Hermitian operator

1.3. Schmidt orthogonalization.
1
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2. Bra, Ket and Operators

2.1. Basic.

• h↵|�i⇤ = h�|↵i
• h↵|↵i is real
• h↵|↵i � 0
• Given a set of orthonormal basis, an operator can be written as A =

P
Aij |iihj|

• hAi = h |A| i does not depend on basis
•  (x) = hx| i and �(p) = hp|�i

2.2. Di↵erent kinds of operators.

• Projection operator ! measurement
• Hermitian operator ! physical quantity
• Unitary operator ! transform of basis / operator

2.3. Commutator.

• Jacob Identity: [A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0
• compatable(can be measured at the same time) means [A,B] = 0
• If [A,B] 6= 0, we have �2

A
�2
B
> 1

4
|h[A,B]i|2

�2A = h(Â� hÂi) |(Â� hÂi) i = hf |fi

�2B = h(B̂ � hB̂i) |(B̂ � hB̂i) i = hg|gi

�2A�
2

B = hf |fihg|gi

hf |fihg|gi � |hf |gi|2

|hf |gi|2 =
✓
hf |gi+ hg|fi

2

◆
2

+

✓
hf |gi � hg|fi

2i

◆
2

�
✓
hf |gi � hg|fi

2i

◆
2

2.4. Pauli Matrix.

�x = | "ih# |+ | #ih" | =
✓

0 1
1 0

◆

�y = �i| "ih# |+ i| #ih" | =
✓

0 �i
i 0

◆

�z = | "ih" |� | #ih# | =
✓

1 0
0 �1

◆

• [�i,�j ] = 2i"ijk�k
• {�j ,�k} = 2�jkI

• General Hermitian matrix H = h1I+~h ·~�, with Det[H] = h2
1
�~h2 and Tr[H] = 2h1

• Eigenvalues � of H satisfy �2 � �Tr[H] +Det[H] = 0, � = h1 ± |~h|
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• Operator ĥ · ~� has eigenvalues ±1, and is commute with H
• Operator �x�y(�) = cos(�)�x + sin(�)�y satisfies [�z

2
,�x�y(�)] = �i @

@�
�x�y(�)

• ei✓
�z

2 �x�y(�)e�i✓
�z

2 = �x�y(�+ ✓)
• (n̂ · ~�)2 = I
• ei✓(n̂·~�) = cos ✓I + i sin ✓(n̂ · ~�)
• Tr[�i�j ] = 2�ij

3. Entanglement and Tensor Product

• Entangled state cannot be written as a tensor product
• Not entangled state / a tensor product can be considered as two isolated quantum
systems

• Definition of the tensor product

�(1)x ⌦ I(2) =

0

BB@

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

1

CCA

3.1. Density matrix.

• Reduced density matrix: ⇢(1)
 

= Tr2[⇢ ]

• For any operator O(1) and any state | i, Tr[⇢ O(1) ⌦ I(2)] = Tr1[⇢
(1)

 
O(1)]

• Tr1[⇢
(1)

 
] = 1

• Projection operator on a pure state has one eigenvalue 1 and all others are 0
•  is a pure state if Tr[⇢2

 
] = 1

• S = �Tr[⇢ log(⇢)], pure state will have S = 0

4. About Momentum

4.1. Basic.

• Start from the assumption hx|pi = const eip·x

• With hp0|p00i = �(p0 � p00), we have hx|pi = 1p
2⇡
eip·x

• p̂ is the generator of infinitesimal transition eip̂x0 |x0i = |x0 � x0i
• [x̂, p̂] = i
• p̂|xi = i @

@x
|xi and hx|p̂ = �i @

@x
hx|

• x̂|pi = �i @
@p
|pi and hp|x̂ = i @

@p
hp|

4.2. Quantum Dynamics.

• U is an unitary operator satisfies | (t)i = Û(t)| (0)i, then i ˙̂UÛ † = Ĥ is a Hermit-
ian operator

d

dt

⇣
Û(t)Û †(t)

⌘
=

d

dt
Î = 0
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• i ˙̂U(t) = ĤÛ(t), where H is Hamiltonian, then we got Ĥ| (t)i = i @
@t
| (t)i and

Û(t, t0) = e�iĤ(t�t0)

• When Ĥ(t) depends on time, U(t, t0) = T[exp(�i
R
t

t0
Ĥ(t0)dt0)]

• 1

n!
T
h⇣

�i
R
t

t0
dt0 bH (t0)

⌘
n
i
= (�i)n

R
t

t0
dt1

R
t
1

t0
dt2· · ·

R
t
n�1

t0
dtn bH

�
t1
� bH

�
t2
�
. . . bH (tn)

5. Heisenberg Picture

• ÂH(t) = U(t)†ÂSU(t)
• ȦH(t) = i[H,AH(t)]

• When Ĥ = p̂
2

2m
+ V (x̂), ˙̂x = i[Ĥ, x̂H ] = p̂

H

m
and ˙̂pH = �V 0(x̂H)

5.1. An example of spin 1

2
particle.

We put an electron in a magnetic field, then the Hamiltonian is H = �~µ · ~B and
~µ = �gµB~s = �gµB

~�

2
, in which µB = e

2me
.

Let ~B = B0ẑ, we have H = 1

2
gµBB0�̂z =

1

2
!�̂z. So, U(t) = exp(�i!t �̂z

2
), and we have

0

@
ŝHx (t)
ŝHy (t)
ŝHz (t)

1

A =

0

@
cos(!t) sin(!t) 0
� sin(!t) cos(!t) 0

0 0 1

1

A

0

@
ŝHx (0)
ŝHy (0)
ŝHz (0)

1

A

5.2. Simple 1-d Harmonic Oscillator.

We have the Hamiltonian H = 1

2m
p2+ 1

2
m!2x2. Replace with x̃ =

p
m!x and p̃ = pp

m!
,

it keeps [x̃, p̃] = i. Now, H = !

2
(p̃2 + x̃2).

With Heisenberg equations of motion, we have ˙̂xH = i[Ĥ, x̂H ] = !p̂H and ˙̂pH = �!x̂H .
The solutions are

x̃H(t) = cos(!t)x̃H(0) + sin(!t)p̃H(0)

p̂H(t) = � sin(!t)x̃H(0) + cos(!t)p̂H(0)

which is same as the classical solutions.
Also, there is another way by changing variables

â =
1p
2
(x̃+ ip̃)

â† =
1p
2
(x̃� ip̃)

Then we have âH(t) = ei!tâH(0) and (â†)H(t) = e�i!t(â†)H(0).

• [â, â†] = 1
• N̂ = â†â = 1

2
(x̃2 + p̃2)� i

2
[p̃, x̃], so Ĥ = (N̂ + 1

2
)!

• â|ni =
p
n|n� 1i and â†|ni =

p
n+ 1|n+ 1i (Here n can only be the integer)

• Partition function Z(�) =
P

n
e��En , Tr[U(�i�)] = Tr[e��H ] = Z(�)

5.3. About the derivative of Dirac delta function.
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5.3.1. Definition.

�0(x) = lim
h!0

�(x+ h)� �(x)

h

5.3.2. Properties.
�0(�x) = ��0(x)

x�0(x) = ��(x)
Z 1

�1
�0(x)'(x)dx = �

Z 1

�1
�(x)'0(x)dx = �'0(x)|x=0

Z 1

�1
�0(x� x0)'(x0)dx0 =

Z 1

�1
�(x� x0)'0(x0)dx0 = '0(x)

5.4. Schrodinger Equation in 3-D coordinate space.

• Strat from Ĥ| i = i @
@t
| i, we can get h~x| ~̂p·~̂p

2m
+ V (~̂x)| i = (�r2

2m
+ V (~x)) (~x, t) =

ih~x| @
@t
 i = i @

@t
 (~x, t)

5.4.1. Propagator and Green’s function.
Basically, we want to get  (~x0, t) with  (~x, t0). As we know, | (t)i = U(t, t0)| (t0)i.
 (~x, t) = h~x| (t)i =

R
d3~x0h~x|U(t, t0)|~x0ih~x0| (t0)i =

R
d3~x0K(~x, t; ~x0, t0) (~x0, t0), in

which K is a propagator.
(�r2

2m
+V (~x)�i @

@t
) (~x, t) = Ô (~x, t) = 0, we have ÔK(~x, t; ~x0, t0) = �i�3(~x�~x0)�(t�t0).

We call K is the Green’s function of Ô.
5.5. Gauge Potentials and Electronicmagnetics.

Hamiltonian for charged particle in Electronicmagnetic field is H = (~p�q ~A)
2

2m
+ q�.

• ~B = ~r⇥ ~A and ~E = �~r�� @ ~A

@t

• Here canonical momentum ~p is not equal to m~v and does not corresponding to
”mechanical momentum”, but this is the the only way to write a Hamiltonian
formalism in terms of local object.

5.5.1. Gauge transform.

• ~A(~x, t) ! ~A0(~x, t) = ~A(~x, t) + ~r⇤(~x, t)
• �(~x, t) ! �0(~x, t) = �(~x, t)� @⇤(~x,t)

@t

• The transform leave ~E, ~B and all physical things the same.
• This corresponding to an unitary transformation that leave all matrix elements of
~x unchanged but can alter ~p, which is not physical and cannot be measured unless
~A is specified.

• The expression is U = exp(�iq⇤(~̂x)). Obviously, U †f(~̂x)U = f(~̂x), U †~̂pU = ~̂p �
q~r⇤.

• U †(~̂p� q ~A(~̂x))U = ~̂p� q ~A0(~̂x)
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An example: ~B = B0n̂z, ~A = xB0n̂y.

Schrodinger Equation: 1

2m
(� @

2

@x2 � @
2

@z2
+ (i @

@y
� xqB0)2) = E 

Consdiering there is no dependence on y and z apart from derivatives, we assume  =
eiPzz · eiPyy · f(x), where Pz and Py are numbers.

Introduce !0 =
qB0
m

, we have [� 1

2m

@
2

@x2 + 1

2
m!2

0
(x� Py

m!0
)2 + P

2
z

2m
]f(x) = Ef(x).

The first two terms are Harmonic Oscillator, so E = P
2
z

2m
+ !0(n+ 1

2
). (Each set of wave

functions with the same value of n is called a Landau level)

6. Homework Tricks

6.1. Problem Set 2, Q3. 2-D Hermitian matrix can be decomposed into the linear com-
bination of I, �x, �y and �z.


