610 Midterm 2 review: Classical Mechanics

Jinchen He

Calculus of variations

$$
S = \int_{x_1}^{x_2} dx f[y(x), y'(x), x], y(x_1) = y_1, y(x_2) = y_2
$$

find the $y_0(x)$ to minimize S.

Set $y(x) = y_0 + \epsilon \eta(x)$, $\epsilon \to 0$, to make $dS = 0$, we can get the E-L equation.

$$
\frac{\partial f}{\partial y} - \frac{d}{dx} \left(\frac{\partial f}{\partial y'} \right) = 0
$$

E-L equation for unconstrained motion

We have the action
$$
S = \int dt L
$$
 and $L = T - V$.
\nGeneralized force: $\frac{\partial L}{\partial q_i} = F_i$
\nGeneralized momentum: $\frac{\partial L}{\partial \dot{q}_i} = P_i$
\nE-L equation: $\frac{d}{dt} P_i = F_i$

E-L equation for constrained motion directly

 $L = T - U$ where U contains only non-constraint forces, is stationary at true path with respect to all path that satisfy the constrain.

Oct. 11: three examples

Noether's Theorem

Consider a system of particles with pair-like interactions, the Lagrangian is

$$
L=\frac{1}{2}\sum_i m_i\dot{x}_i^2+\sum_{i>j}V(x_i-x_j)
$$

Let $x_i' = x_i + a$, where $a \to 0$ is a constant, then we can rewrite L with x_i' and $\dot{x_i}' = \dot{x_i}$.

$$
L' = \frac{1}{2} \sum_{i} m_i (\dot{x}_i')^2 + \sum_{i > j} V(x_i' - x_j')
$$

So, L' has the same form as L . The Lagrangian is "form invariant" (covariant) under the transformation.

Conservation of Angular Momentum

The angular momentum $\overrightarrow{A} = \overrightarrow{r} \times \overrightarrow{r}$ is conserved, the plane of \overrightarrow{r} and \overrightarrow{r} must be the same plane.

For ϕ , we will get the conservation of angular momentum. For r, replace $\dot{\phi}$ with A, we will get

$$
\mu \ddot{r} = -\frac{d}{dr} U_{eff}(r)
$$

\n
$$
\mu \dot{r} \cdot \ddot{r} = -\frac{d}{dr} U_{eff}(r) \cdot \dot{r}
$$

\n
$$
\mu \frac{d}{dt} \left(\frac{\dot{r}^2}{2} \right) = -\frac{d}{dt} U_{eff}(r)
$$

\n
$$
\mu \frac{\dot{r}^2}{2} + U_{eff}(r) = E = const
$$

\n
$$
\frac{dr}{dt} = \sqrt{\frac{2}{\mu} (E - U_{eff})}
$$

Hamiltonian Dynamics

We define the Hamiltonian:
$$
H = \sum_{i} p_i \dot{q}_i - L
$$
, then we have

$$
\frac{\partial H}{\partial p_i} = \dot{q}_i; \frac{\partial H}{\partial q_i} = -\dot{p}_i
$$

Liouville's Theorem

Consider a region in phase space and follow its evolution over time. In general, the shape of the region will change, but the volume remains the same.

Liouville's Equation

With
$$
\frac{d\rho}{dt} = 0
$$
, we have

$$
\frac{\partial \rho}{\partial t} + \{\rho, H\} = 0
$$

Poincare Recurance Theorem

Poisson Bracket

$$
\{f, g\} = \sum_{i} \left(\frac{\partial f}{\partial q_i} \frac{\partial g}{\partial p_i} - \frac{\partial f}{\partial p_i} \frac{\partial g}{\partial q_i} \right)
$$

properties:

•
$$
\{f, g\} = -\{g, f\}
$$

- $\{af + bg, h\} = a\{f, h\} + b\{g, h\}$
- $\{fg, h\} = f\{g, h\} + \{f, h\}g$

• Jacobi Identity $\{f, \{g, h\}\} + \{h, \{f, g\}\} + \{g, \{h, f\}\} = 0$

•
$$
\frac{df}{dt} = \{f, H\} + \frac{\partial f}{\partial t}
$$

•
$$
\{q_i, q_j\} = \{p_i, p_j\} = 0 \text{ and } \{q_i, p_j\} = \delta_{ij}
$$

Canonical Transformation

$$
\frac{\partial H}{\partial p_i} = \dot{q}_i; \ \frac{\partial H}{\partial q_i} = -\dot{p}_i
$$

$$
q_i \rightarrow Q_i(q, p, t)
$$

$$
p_i \rightarrow P_i(q, p, t)
$$

$$
H(p, q, t) \rightarrow K(P, Q, t)
$$

If the transformation preserve

$$
\frac{\partial K}{\partial P_i} = \dot{Q}_i \; ; \; \frac{\partial K}{\partial Q_i} = -\dot{P}_i
$$

we call it canonical transformation.

Restricted Canonical Transformation

$$
H(p,q) = K(P,Q)
$$

$$
\{Q_i, Q_j\} = \{P_i, P_j\} = 0 \text{ and } \{Q_i, P_i\} = \delta_{ij}
$$

Theorem: The Poisson Bracket is invariant under canonical transform.

Action-Angle variables

Canonical transform: $(p, q) \rightarrow (I, \theta)$ [respectively] So that to make $H = H(I)$, then we have

$$
\dot{\theta} = \frac{\partial H}{\partial I}
$$
 and I are constants

This choice is always possible for any 1-D system, I is called the "action variable", θ is "angle variable".

Claim: The correct choice of I is $I = \frac{1}{2\pi} \oint p dq$.

Then we have

•
$$
H = H(I) = E
$$

\n• $\dot{\theta} = \frac{\partial H}{\partial I} = \frac{dE}{dI} = \omega$
\n• $t = \frac{d}{dE} \int_{q(0)}^{q(t)} p dq$
\n• $\theta = \omega t = \frac{d}{dI} \int_{q(0)}^{q(t)} p dq$

Adiabatic Invariants

consider only 1 d.o.f.

$$
H = \frac{p^2}{2m} + V(q)
$$

Assume motion is bounded, so motion is periodic.

Let the potential depend on some parameter λ , so that $V = V(q, \lambda)$. We wish to explore what happens if λ changes slowly ("adiabatically") with time. For example, we may change the length of a pendulum.

Since H is time-dependent, energy is no longer conserved.

$$
\frac{dE}{dt} = \left(\frac{\partial H}{\partial t}\right)_{p,q} = \left(\frac{\partial H}{\partial \lambda}\right)_{p,q} \cdot \frac{d\lambda}{dt}
$$

There are <u>specific combinations of E and λ which remain constant as λ is slowly changed</u>. These combinations are called "adiabatic invarants".

Claim: The adiabatic invariant for this system is

$$
I = \frac{1}{2\pi} \oint p dq
$$

where p is now $p = \sqrt{2m(E(t) - V(q, \lambda(t)))}$.

With the adiabatic assumption, the orbit in the phase sapce below can be closed.

e.g.

$$
H = \frac{p^2}{2m} + \frac{1}{2}k(t)q^2
$$
, k varying slowly

We have $I = \frac{E}{\omega} = E \sqrt{\frac{m}{k}}$, with the adiabatic invariant claim, we can get \equiv

$$
\frac{E(t_1)}{\sqrt{k(t_1)}} = \frac{E(t_2)}{\sqrt{k(t_2)}}
$$

END of classical mechanics.