610 Final review: Classical Electrodynamics

Jinchen He
Gauss's theorem:
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Uniqueness of solution to Poisson's equation:
If we impose Dirichlet or Neumann boundary conditions, the solution is unique.

* Dirichlet boundary condition: the value of ¢ is specified on the boundary

+ Neumann boundary condition: V¢ - 1l is specified on the boundary

Electrostatic Energy:
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560 |E| 2 can be identified as the energy density stored in electrostatic field.

Force on a conducting surface:
* Energy charge from a virtual displacement, the force per unit area is
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where ¢ is the charge area density on the surface.

 Directly from electronic field, the force per unit area is
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Usage of Green function:

We need to generalize the Green function method to address more general boundary conditions, where either ¢b_
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or E - 11 _are specified on the boundaries.
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*If gb(x) satisfies Dirichlet boundary conditions, the value of (P _is specified at boundary, choose

>, > >
Gp(x’,x) = 0 for all X’ on the surface S to get
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* For Neumann boundary conditions,_ng ‘N _is specified on the boundary. The situation is more complicated,
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because we cannot choose V'Gy(x”, x) - 1" = 0 for all X on the surface S.

This choice is inconsistent because
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The simplest consistent choice is
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for all D_C)' on the surface S. The solution is
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where (@) is the average value of ¢ over whole surface. If one of the surface is at infinity, (() is typically
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vanishes. Under the Neumann boundary condition, we have Gy (x’, X) = Gn(x, x7).

Laplace operator:
* In rectangular coordinate
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general solution:
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* In spherical coordinate
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general solution:

+1
V(r,0,¢) = D5 25 (At +Biur D) Y3,,(0, )

=0 m=-1

general solution with azimuthal symmetry m = O:
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* In cylindrical coordinates
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general solution

V(p, ) = R(p)¥(¢)
R(p) = ap” +bp™
Y(¢p) = A cos(v) + B sin(vo)

general solution for full azimuthal range:

V(p, ) =ap+bygInp+ Z a,p" sin(ng + a,) + Z b,p™" sin(ng + B,)
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general solution for ¢ € [0, f].with V(¢ = 0) = V(¢ = p):

Figure 2.12 Intersection of two conducting planes defining a corner in two dimensions
with opening angle .

Vip, @) = V(¢ = 0)+ D5 (ap™™ + bup ™) sin(mnp / B)
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Orthogonality relation:
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Useful expansion:
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where 7_ and 7+, are smaller one and larger one between |x| and |x’|,  is the angle between X and x”.
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Po(x) =1 \
Pi(x) = x
Pyx) = 4(3x? - 1) >

P3(x) = 5(5x> — 3x)
Py(x) = 5(35x* — 30x* + 3),




